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Preface

This edition is equipped with more than a hundred pages of new materials.
Unlike the first edition, this edition includes complete proofs of almost
all theorems. We have added numerous examples and exercises. The
purpose of these examples and exercises is to develop problem solving
skills. It is through these examples and exercises that the students can as-
sess progress and understanding. Hints are given to several of the exercises.

Our general approach on this book is simple, and we hope that the students
will be equally interested in all parts of this book. The main emphasis is
given on understanding the underlying fundamental principles. This book
can be used as a main text, a reference text or a supplementary text. It
can also be used for self study.

This new edition gave us the opportunity to streamline some arguments to
correct errors and misprints and to ratify proofs and solutions. We would
like to thank all those who gave comments and suggestions to the first
edition. We welcome remarks and suggestions from our readers.

Thoubal A J Sanasam
February 2019 N C Cogent

Nirtish Laishram
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Notations and Abbreviations

N the natural numbers
Z the integers
Q the rational numbers
R the real numbers
C the complex numbers

⇐⇒ if and only if
=⇒ implies
∀ for all
∃ there exists
4 triangle
∠ angle
x ∈ A the element x belongs to the set A
A ∪B the union of A and B
A ∩B the intersection of A and B
n! the product of first n natural numbers
bxc the greatest integer less than or equal to x
|x| the absolute value of x
(a, b) the gcd of a and b (see Chapter 1)
[a, b] the lcm of a and b
(x, y) the coordinates of a point (see Chapter 11)
min{a, b} the minimum of a and b
max{a, b} the maximum of a and b
� Q.E.D. (quod erat demonstrandum), that which was to be

demonstrated

CMO Canadian Mathematical Olympiad
IMO International Mathematical Olympiad
INMO Indian National Mathematical Olympiad
USAMO United States of America Mathematical Olympiad



Chapter 1

Number System

“Begin at the beginning,” the King said gravely, “and go on till you
come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

A number is an abstract (mathematical) object used to count, measure
and label. A number system is a writing system to represent numbers.
The set of natural numbers, the set of integers, the set of rational numbers,
the set of real numbers, etc., are some commonly used number systems.

Divisibility

Notation: In this chapter, the small letters a, b, c, d, k, n, etc., denote
integers unless stated otherwise; they can be positive, negative, or zero.

Definition 1.1 (Divisibility). An integer a is said to divide an integer b
if there exists an integer c such that b = ac. In this case, we say a divides
b or b is divisible by a or a is a divisor (or factor) of b or b is a multiple
of a and we write a | b. We write a - b if a does not divide b. The notation
a | b should not be confused with the fraction a/b.

Do you know? Zero divides only zero. If 0 | n, then n = 0×a for some
integer a, i.e., n = 0 and hence 0 | 0. However, the division of zero by
zero (0/0) is indeterminate.

Definition 1.2 (Prime number). An integer is prime if it is greater
than 1 and it has exactly two distinct positive factors viz. 1 and the
number itself. Equivalently, an integer is prime if it is greater than 1 and
whenever it divides a product, it divides at least one of the factors.
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Definition 1.3 (Composite number). An integer is composite if it has
more than two distinct positive factors.

Remark: 1 is neither prime nor composite. 2 is the only even prime.

Definition 1.4 (HCF or GCD). The highest common factor or greatest
common divisor of two integers a and b is the integer d satisfying the
following properties:

(i) d is non-negative, (d ≥ 0),

(ii) d divides both a and b, (d | a and d | b),
(iii) every common divisor of a and b divides d, (e | a, e | b =⇒ e | d).

The HCF of a and b is denoted by gcd(a, b) or simply by (a, b). In
particular, (a, b) = 0 if and only if a = b = 0. Otherwise (a, b) ≥ 1.

Remark: Most authors define HCF for two integers not both zero.

Definition 1.5 (Relatively prime or coprime). Two integers a and
b are said to be relatively prime (or coprime, or prime to each other) if
(a, b) = 1.

In other words, a and b are relatively prime if and only if their only
common divisors are ±1.

Definition 1.6 (LCM). The least common multiple of two integers a
and b is the integer d satisfying the following properties:

(i) d is non-negative, (d ≥ 0),

(ii) d is divisible by both a and b, (a | d and b | d),

(iii) d divides every common multiple of a and b, (a | e, b | e =⇒ d | e).
The LCM of a and b is denoted by lcm[a, b] or simply by [a, b].

Theorem 1.1. The product of two positive integers is equal to the product
of their HCF and LCM. In general, (a, b)[a, b] = |ab| for any a, b ∈ Z.

Note: The product of three (or more) positive integers need not be equal
to the product of their HCF and LCM. However, the following results hold
good for three positive integers a, b, c:

(a, b, c) =
abc[a, b, c]

[a, b][b, c][c, a]
and [a, b, c] =

abc(a, b, c)

(a, b)(b, c)(c, a)
.

Lemma: A lemma is a provable statement used in proving another
statement.
Algorithm: An algorithm is a well defined sequence of steps forming a
process for solving a given problem.
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Euclid’s Division Lemma

Theorem 1.2 (Euclid’s division lemma). Let a and b be any two
integers and b > 0. Then there exist unique integers q and r such that
a = bq + r and 0 ≤ r < b.

The integer q is called the quotient of a with respect to b and the integer
r is called the remainder of a with respect to b.

Example 1. Show that every integer is of the form 2k or 2k + 1.

Solution: Let a be any integer. Applying Euclid’s division lemma on a
and 2, we have

a = 2k + r, 0 ≤ r < 2, where k and r are integers.

Here, r = 0 or 1. Hence, every integer is of the form 2k or 2k + 1.

Exercise 2. Show that every integer is of the form 3k, 3k + 1 or 3k + 2.

Exercise 3. Is it true that the values of the remainder when a positive
integer is divided by 4 are 0 and 1 only? Justify your answer.

Exercise 4. The square of any positive integer cannot be of the form
3m+ 2, where m is a natural number. Justify.

Exercise 5. Show that every odd integer is of the form 4k + 1 or 4k + 3.

Exercise 6. Show that every square integer is of the form 4k or 4k + 1.

Exercise 7. Prove that one of every three consecutive integers is divisible
by 3.

Example 8. Show that the sum of the squares of two odd integers is of
the form 4k + 2.

Solution: Let m and n be any two odd integers. We know that every
odd integer is of the form 2q + 1, for some integer q. So, m = 2a+ 1 and
n = 2b+ 1 for some integers a and b.

∴ m2 + n2 = (2a+ 1)2 + (2b+ 1)2

= 4a2 + 4a+ 1 + 4b2 + 4b+ 1

= 4(a2 + a+ b2 + b) + 2

= 4k + 2, where k = a2 + a+ b2 + b ∈ Z.

This shows that the sum of the squares of two odd integers is of the form
4k + 2.
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Exercise 9. If a is an odd integer, show that a2 + (a+ 2)2 + (a+ 4)2 + 1
is divisible by 12.

Hint: Take a = 2k + 1.

Exercise 10. Prove that the sum of two consecutive odd numbers is
divisible by 4.

Exercise 11. Let m and n be any two odd integers. Prove that m2+n2+6
is divisible by 8.

Exercise 12. If p ≥ 5 is a prime, show that p2 + 2 is divisible by 3.

Hint: p is of the form 3k + 1 or 3k + 2.

Exercise 13. Show that every positive odd integer is of the form 6q + 1,
6q + 3 or 6q + 5, where q is some integer.

Exercise 14. Show that the cube of any positive integer is of the form
9m, 9m+ 1 or 9m+ 8.

Hint: Every positive integer is of the form 3k, 3k + 1 or 3k + 2.

Exercise 15. If an integer n is a square as well as a cube (like 64 = 82 =
43), then prove that n must be of the form 7k or 7k + 1.

Hint: Every square is of the form 7k, 7k + 1, 7k + 2 or 7k + 4, and every
cube is of the form 7k, 7k + 1 or 7k + 6.

Exercise 16. Prove that every prime number greater than 3 is of the
form 6k + 1 or 6k + 5, where k is some integer.

Hint: 6k + r is divisible by 2 if r = 0, 2, 4 and is divisible by 3 if r = 3.

Exercise 17. Let r be the remainder obtained by dividing a prime number
p by 30. Show that either r = 1 or r itself is a prime number.

Exercise 18. Prove that no integer in the sequence 11, 111, 1111, . . . is a
perfect square.

Hint: Every number in the sequence is of the form 4k + 3.

Exercise 19. If n ≥ 4, then prove that n, n+2, n+4 cannot all be primes.

Hint: Every integer is of the form 3k, 3k + 1 or 3k + 2.

Exercise 20. If n is an odd integer, prove that n4 + 4n2 + 11 is divisible
by 16.

Exercise 21. If p and 8p−1 are both prime, prove that 8p+1 is composite.

Hint: If p = 3k + 2, then 8p− 1 is divisible by 3. p = 3 or p = 3k + 1.
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Euclid’s Algorithm

Euclid’s algorithm for finding the HCF of two given positive integers:

Step 1. Find the quotient and remainder of the division of the greater
number by the smaller.

Step 2. If the remainder is zero, then the divisor is the HCF.

Step 3. Else, taking the previous remainder as the new divisor and the
previous divisor as the new dividend, find the quotient and the remainder.

Step 4. Continue the process till the remainder is zero. The last divisor
is the required HCF.

Remark: Although Euclids algorithm is stated for only positive integers,
it can be extended for all non-zero integers. Euclid’s algorithm works
because of the following result.

Theorem 1.3. If a = bq + r, then (a, b) = (b, r).

Proof: If (a, b) = d, then d | r. If c | b and c | r, then c | a. Now,
c | a, c | b =⇒ c | d. Thus, d divides both b and r, and any common
divisor c of b and r also divides d. Hence, (b, r) = d.

Example 22. Let a and b be two positive integers where a > b. Prove that
the last divisor (or the last non-zero remainder) in the Euclid’s algorithm
for a and b is the HCF of a and b.

Solution: Applying Euclid’s division lemma successively, we get the
following series of relations:

a = bq + r1, 0 < r1 < b, (1)

b = r1q1 + r2, 0 < r2 < r1, (2)

r1 = r2q2 + r3, 0 < r3 < r2, (3)

...
...

...

rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1, (n)

rn−1 = rnqn + 0. (n+ 1)

Here, q, q1, . . . , qn, r1, r2, . . . , rn are positive integers and a > b > r1 >
r2 > . . . > rn. The set of equations (1) to (n+ 1) is the Euclid’s algorithm
for a and b.
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We know that if a = bq + r, then (a, b) = (b, r). Applying this result
successively to the equations (1) to (n+ 1), we get

(a, b) = (b, r1) = (r1, r2) = · · · = (rn−1, rn) = rn.

The last equality is true because rn divides rn−1 as seen from the (n+ 1)th

equation. Thus, we see that rn, which is the last divisor (or the last
non-zero remainder) in the Euclid’s algorithm, is the HCF of a and b.

Example 23. Using Euclid’s algorithm, determine whether the numbers
20 and 12 are coprime or not.

Solution: Euclid’s algorithm for the two integers comprises of the follow-
ing equalities:

20 = 12× 1 + 8,

12 = 8× 1 + 4,

8 = 4× 2 + 0.

Here, the last divisor is 4 and hence the HCF of 20 and 12 is 4. Since the
HCF is not 1, the numbers 20 and 12 are not coprime.

Example 24. Find the HCF of 50, 60 and 70. Given that the LCM of
the numbers is 2100, determine whether the product of the numbers is
equal to the product of their HCF and LCM.

Solution: We have

60 = 50× 1 + 10,

50 = 10× 5 + 0.

Therefore, the HCF (50, 60) = 10. Now,

70 = 10× 7 + 0.

Therefore, the HCF (10, 70) = 10.
Thus, (50, 60, 70) = ((50, 60), 70) = (10, 70) = 10.

Now, the product of the numbers = 50×60×70 = 210000, and the product
of their HCF and LCM = 10× 2100 = 21000. Hence, the product of the
numbers is not equal to the product of their HCF and LCM.

Exercise 25. What is the HCF of two positive integers a and b if b is a
factor of a? (Answer: b.)
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Exercise 26. Find the HCF of the smallest prime number greater than
10 and the largest composite number less than 50. (Answer: 1.)

Exercise 27. The HCF of a prime number and a composite number is
either 1 or the prime number. Justify.

Example 28. Prove that the fraction
21n+ 4

14n+ 3
is irreducible (i.e., is in

lowest terms) for every natural number n. (IMO 1959)

Solution: A fraction
a

b
is irreducible if gcd(a, b) = 1. We shall use

Euclid’s algorithm to show that (21n+ 4, 14n+ 3) = 1 ∀ n ∈ N. We have

21n+ 4 = (14n+ 3)× 1 + (7n+ 1),

14n+ 3 = (7n+ 1)× 2 + 1,

7n+ 1 = 1× (7n+ 1) + 0.

Here, the last divisor is 1 and hence (21n + 4, 14n + 3) = 1 ∀ n ∈ N.

Consequently
21n+ 4

14n+ 3
is irreducible for every natural number n.

Remark: If d is a common divisor of a and b, then d divides ax+ by for
any integers x and y. Example 28 can be solved by using this result. If
(21n + 4, 14n + 3) = d, then d divides −2(21n + 4) + 3(14n + 3), i.e., d
divides 1. Hence, d = 1.

Exercise 29. Prove that the fraction
12n+ 1

30n+ 2
is irreducible for every

natural number n.

Example 30. Prove that (2n − 1, 2n + 1) = 1 for any positive integer n.

Solution: If n = 1, then clearly (2n − 1, 2n + 1) = (1, 3) = 1.
For n ≥ 2, we have

2n + 1 = (2n − 1)× 1 + 2,

2n − 1 = 2× 2n−1 − 1 = 2× 2n−1 − 2 + 1 = 2×
(
2n−1 − 1

)
+ 1,

2 = 1× 2 + 0.

Hence, (2n − 1, 2n + 1) = 1 for n ≥ 2. This completes the proof.

Remark: If d = (2n − 1, 2n + 1), then d divides (2n + 1)− (2n − 1), i.e.,
d divides 2. But 2 does not divide 2n + 1 for any positive integer n. So, d
cannot be 2. Consequently d = 1.
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Exercise 1.1

1. Using Euclid’s algorithm find the HCF of

(i) 1240 and 1984,

(ii) 348 and 504,

(iii) 986 and 899,

(iv) 4216 and 1240,

(v) 10605 and 5256,

(vi) 10005 and 9269.

Solution:

(i) Euclid’s algorithm for the two integers 1240 and 1984 comprises of
the following equalities:

1984 = 1240× 1 + 744,

1240 = 744× 1 + 496,

744 = 496× 1 + 248,

496 = 248× 2 + 0.

The last divisor is 248 and hence the required HCF is 248.

(ii) The two given integers are 348 and 504. By Euclid’s algorithm, we
have

504 = 348× 1 + 156,

348 = 156× 2 + 36,

156 = 36× 4 + 12,

36 = 12× 3 + 0.

The last divisor is 12 and hence the required HCF is 12.

(iii) The two given integers are 986 and 899. By Euclid’s algorithm,
we have

986 = 899× 1 + 87,

899 = 87× 10 + 29,

87 = 29× 3 + 0.

The last divisor is 29 and hence the required HCF is 29.

(iv) The two given integers are 4216 and 1240. By Euclid’s algorithm,
we have

4216 = 1240× 3 + 496,

1240 = 496× 2 + 248,

496 = 248× 2 + 0.

The last divisor is 28 and hence the required HCF is 248.
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(v) The two given integers are 10605 and 5256. By Euclid’s algorithm,
we have

10605 = 5256× 2 + 93,

5256 = 93× 56 + 48,

93 = 48× 1 + 45,

48 = 45× 1 + 3,

45 = 3× 15 + 0.

The last divisor is 3 and hence the required HCF is 3.

(vi) The two given integers are 10005 and 9269. By Euclid’s algorithm,
we have

10005 = 9269× 1 + 736,

9269 = 736× 12 + 437,

736 = 437× 1 + 299,

437 = 299× 1 + 138,

299 = 138× 2 + 23,

138 = 23× 6 + 0.

The last divisor is 23 and hence the required HCF is 23.

2. Show that the product of two consecutive integers is divisible by 2.

Solution: Let a, a+ 1 be the two consecutive integers. Then a is of
the form 2q or 2q + 1 for some integer q.

If a = 2q, then a(a+ 1) = 2q(2q + 1), which is divisible by 2.

If a = 2q + 1, then a(a+ 1)
= (2q + 1)(2q + 1 + 1)
= 2(2q + 1)(q + 1), which is divisible by 2.

Thus, the product a(a+ 1) is always divisible by 2.

3. Show that the product of two consecutive even integers is divisible by
8.

Solution: Let 2a and 2a + 2 be the two consecutive even integers
where a is some integer. The integer a is of the form 2q or 2q + 1 for
some integer q.

If a = 2q, then 2a(2a+ 2) = 4a(a+ 1)
= 4(2q)(2q + 1)
= 8q(2q + 1), which is divisible by 8.
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If a = 2q + 1, then 2a(2a+ 2)
= 4a(a+ 1)
= 4(2q + 1)(2q + 1 + 1)
= 4(2q + 1){2(q + 1)}
= 8(2q + 1)(q + 1), which is divisible by 8.

Thus, 2a(2a+ 2) is divisible by 8 for any integer a.

4. Show that every integer is of the form 4q, 4q + 1, 4q + 2 or 4q − 1.

Solution: By Euclid’s division lemma, for any integer a, we have

a = 4k + r, where 0 ≤ r < 4 and k, r are integers.

If r = 0, 1 or 2, then a is of the form 4q, 4q + 1 or 4q + 2.
If r = 3, then a = 4k + 3 = 4(k + 1) − 1, in which a is of the form
4q − 1.
Thus, a is of the form 4q, 4q + 1, 4q + 2 or 4q − 1.

5. Show that the product of three consecutive integers is divisible by 6.

Solution: Let a, a + 1 and a + 2 be the three consecutive integers.
The integer a is of the form 2q or 2q + 1. If a = 2q, then

a(a+ 1)(a+ 2) = 2q(2q + 1)(2q + 2), which is divisible by 2.

If a = 2q + 1, then

a(a+ 1)(a+ 2) = (2q + 1)(2q + 2)(2q + 3)

= 2(2q + 1)(q + 1)(2q + 3), which is divisible by 2.

Thus, a(a+ 1)(a+ 2) is divisible by 2 for any integer a.

Also, the integer a is of the form 3q, 3q + 1 or 3q + 2. If a = 3q, then

a(a+ 1)(a+ 2) = 3q(3q + 1)(3q + 2), which is divisible by 3.

If a = 3q + 1, then

a(a+ 1)(a+ 2) = 3(3q + 1)(3q + 2)(q + 1), which is divisible by 3.

If a = 3q + 2, then

a(a+ 1)(a+ 2) = 3(3q + 2)(q + 1)(3q + 4), which is divisible by 3.

Thus, a(a+ 1)(a+ 2) is divisible by 3 for any integer a.

It is observed that a(a+ 1)(a+ 2) is divisible by both 2 and 3 for any
integer a. Hence, a(a+ 1)(a+ 2) is divisible by 6.
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Remark: Q.5 can be solved using the fact that any integer a is of
the form 6q + r, where 0 ≤ r < 6. See the solution to Q.11, page 13.

6. Show that the square of an odd integer is of the form 8k + 1.

Solution: Let 2a+ 1 be any odd integer where a is some integer. Then
(2a+ 1)2 = 4a2 + 4a+ 1 = 4a(a+ 1) + 1. The integer a is of the form
2q or 2q + 1.

If a = 2q, then

(2a+ 1)2 = 4(2q)(2q + 1) + 1
= 8q(2q + 1) + 1
= 8k + 1, where k = q(2q + 1) ∈ Z.

And if a = 2q + 1, then

(2a+ 1)2 = 4(2q + 1)(2q + 2) + 1
= 8(2q + 1)(q + 1) + 1
= 8k + 1, where k = (2q + 1)(q + 1) ∈ Z.

Thus, the square of an odd integer is of the form 8k + 1.

7. If a is divisible by neither 2 nor 3, show that a2 − 1 is divisible by 24.

Solution: The integer a is of the form 6q + r, where 0 ≤ r < 6. If
r = 0, 2, 3 or 4, then a is divisible by 2 or 3. Since a is divisible neither
by 2 nor by 3, we have r = 1 or 5. That is, a is of the form 6q + 1 or
6q + 5.

If a = 6q + 1, then a2 − 1 = (6q + 1)2 − 1
= (6q + 1− 1)(6q + 1 + 1)
= 12q(3q + 1).

If q is even, then clearly a2 − 1 is divisible by 24.
If q is odd, then 3q + 1 is even and hence a2 − 1 is divisible by 24.
If a = 6q + 5, then a2 − 1 = (6q + 5)2 − 1

= (6q + 5− 1)(6q + 5 + 1)
= 12(3q + 2)(q + 1).

If q is even, then (3q + 2) is even and hence a2 − 1 is divisible by 24.
If q is odd, then q + 1 is even and hence a2 − 1 is divisible by 24.

So, a2 − 1 is divisible by 24 if a is divisible neither by 2 nor by 3.

8. Show that any square number cannot be put in the form 4k + 2.

Solution: Every integer n is of the form 2a or 2a+ 1.
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If n = 2a, then n2 = 4a2 = 4q, where q = a2 is an integer. If n = 2a+1,
then n2 = 4a2 + 4a+ 1 = 4(a2 + a) + 1 = 4q + 1, where q = a2 + a is
an integer.

Thus, we see that n2 is of the form 4q or 4q + 1. But a number of the
form 4q or 4q + 1 cannot be put in the form 4k + 2.[

4q = 4k + 2 =⇒ 2(q − k) = 1 =⇒ 2 divides 1, impossible.
4q + 1 = 4k + 2 =⇒ 4(q − k) = 1 =⇒ 4 divides 1, impossible.

]

Hence, n2 cannot be put in the form 4k + 2.

Remark: See example 37, page 15 for another proof of Q.8.

9. Show that any square number is of the form 3n or 3n+ 1.

Solution: We know that any integer is of the form 3k, 3k+1, or 3k+2.
Now, we have

(3k)2 = 3(3k2) = 3n, where n = 3k2,

(3k + 1)2 = 9k2 + 6k + 1

= 3(3k2 + 2k) + 1

= 3n+ 1, where n = 3k2 + 2k,

(3k + 2)2 = 9k2 + 12k + 4

= 3(3k2 + 4k + 1) + 1

= 3n+ 1, where n = 3k2 + 4k + 1.

Thus, any square number is of the form 3n or 3n+ 1.

10. Show that one of three consecutive odd integers is a multiple of 3.

Solution: Let a, a+ 2 and a+ 4 be the three consecutive odd integers.
The integer a is of the form 3q, 3q + 1 or 3q + 2.
If a = 3q, then clearly a is a multiple of 3.
If a = 3q + 1, then a+ 2 = 3q + 3 = 3(q + 1) is a multiple of 3.
If a = 3q + 2, then a+ 4 = 3q + 6 = 3(q + 2) is a multiple of 3.
Thus, one of a, a+ 2 and a+ 4 is a multiple of 3.

Remark: We can also take the three consecutive odd numbers to be
2a+ 1, 2a+ 3, 2a+ 5, where a is an integer. An argument similar to
that of the solution to Q.10 can be given to show that one of three
consecutive even integers is a multiple of 3. Also, note that for any
integer a, the numbers 2a, 2a+ 2, 2a+ 4 are three consecutive even
numbers.
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11. Show that the product of any three consecutive even integers is divisible
by 48.

Solution: Let 2a, 2a + 2 and 2a + 4 be the three consecutive even
integers where a ∈ Z. Now, 2a(2a+ 2)(2a+ 4) = 8a(a+ 1)(a+ 2).
The integer a is of the form 6q + r, where r = 0, 1, 2, 3, 4 or 5.

If a = 6q, then 8a(a+ 1)(a+ 2) = 8(6q)(6q + 1)(6q + 2)
= 48k,

where k = q(6q + 1)(6q + 2).

If a = 6q + 1, then 8a(a+ 1)(a+ 2) = 8(6q + 1)(6q + 2)(6q + 3)
= 48k,

where k = (6q + 1)(3q + 1)(2q + 1).

If a = 6q + 2, then 8a(a+ 1)(a+ 2) = 8(6q + 2)(6q + 3)(6q + 4)
= 48k,

where k = 2(3q + 1)(2q + 1)(3q + 2).

If a = 6q + 3, then 8a(a+ 1)(a+ 2) = 8(6q + 3)(6q + 4)(6q + 5)
= 48k,

where k = (2q + 1)(3q + 2)(6q + 5).

If a = 6q + 4, then 8a(a+ 1)(a+ 2) = 8(6q + 4)(6q + 5)(6q + 6)
= 48k,

where k = 2(3q + 2)(6q + 5)(q + 1).

If a = 6q + 5, then 8a(a+ 1)(a+ 2) = 8(6q + 5)(6q + 6)(6q + 7)
= 48k,

where k = (6q + 5)(q + 1)(6q + 7).

Thus, 2a(2a+ 2)(2a+ 4) = 8a(a+ 1)(a+ 2) = 48k for some k ∈ Z and
hence 2a(2a+ 2)(2a+ 4) is divisible by 48.

Remark: To solve Q.11, we can also show that a(a+ 1)(a+ 2) = 6k
for some integer k as in the solution to Q.5 on page 10.







Chapter 2

Polynomials

When you have eliminated all which is impossible, then whatever
remains, however improbable, must be the truth.

— Arthur Conan Doyle, The Case-Book of Sherlock Holmes

A polynomial is an expression consisting of variables and coefficients, that
involves addition, subtraction, multiplication, and non-negative integer
exponents of variables. An example of single variable polynomial is
x3 − 2x2 − x + 2. In this chapter, we shall discuss various properties
of polynomials.

Division Algorithm for Polynomials

Definition 2.1 (Degree of a polynomial). If p(x) is a polynomial in
x, the highest exponent of x in p(x) is called the degree of p(x).

A polynomial is called linear, quadratic, cubic, quartic (biquadratic),
or quintic according as its degree is one, two, three, four or five respec-
tively.

Definition 2.2 (Monic polynomial). A polynomial p(x) is said to be
monic if the coefficient of the highest degree term in p(x) is 1.

If p(x) is a polynomial in x, and if k is any number, then the value obtained
by replacing x by k in p(x), is called the value of p(x) at x = k, and is
denoted by p(k).

Definition 2.3 (Zero of a polynomial). A real number a is said to be
a zero or a root of a polynomial p(x) if p(a) = 0.
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Geometrical meaning of the zeroes of a polynomial: The zeroes
of a polynomial p(x) are precisely the x-coordinates of the points where
the graph representing y = p(x) intersects the x-axis. The graph of a
linear polynomial ax+ b, a 6= 0, is a straight line. It intersects the x-axis
at exactly one point. So, a linear polynomial has exactly one zero. The
graph of a quadratic polynomial ax2 + bx + c, a 6= 0, is a parabola. It
intersects the x-axis at atmost 2 points. So, a quadratic polynomial has at
most 2 zeroes. In general, given a polynomial p(x) of degree n, the graph
of y = p(x) intersects the x-axis at atmost n points. So, a polynomial p(x)
of degree n has atmost n zeroes. The following figure shows the graph of
y = x3 − 2x2 − x+ 2 intersecting the x-axis at three distinct points.

XX ′

Y

Y ′

0

y = p(x)

Figure 2.1: Graph of y = p(x) = x3 − 2x2 − x+ 2.

(2, 0)

(1, 0)

(−1, 0)

Remark: The zeroes we have discussed above are the zeroes which are
real. In the complex number system (see page 154), a polynomial of degree
n has exactly n zeroes (counting multiplicities).

Long division process of polynomials:

Let us discuss the long division process of polynomials with the help of an
example. Consider the division of 4 + 2x2 + 3x by 2 + x. We carry out
the division by means of the following steps.

2x2 + 3x+ 4x+ 2

2x− 1

2x2 + 4x

−x+ 4

−x− 2

6

Step 1. We arrange the terms of the dividend
and the division in the descending order of their
degrees. (If any term is missing in the dividend, a
zero may be used to fill in the missing term.) The
dividend is 2x2 + 3x+ 4 and the divisor is x+ 2.

Step 2. We divide the first term of the dividend
by the first term of the divisor, i.e., we divide 2x2

by x and we get 2x. 2x is the first term of the
quotient.
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Step 3. We multiply the divisor x+2 by 2x (the first term of the quotient)
and obtain the product 2x2 + 4x. We subtract this product 2x2 + 4x from
the dividend 2x2 + 3x+ 4 and we get the remainder −x+ 4.

Step 4. We treat the remainder −x + 4 as the new dividend, keeping
the divisor the same. We divide the first term −x of the new dividend by
the first term of the divisor and obtain −1. −1 is the second term of the
quotient.

Step 5. We multiply the divisor x + 2 by −1 (the second term of the
quotient) and subtract the product −x−2 from the dividend −x+ 4. This
gives 6 as the remainder which will be the new dividend for the next step.

Note that steps 4 and 5 are repetitions of the steps 2 and 3 with a new
dividend. The process continues until the remainder is zero or the degree
of the remainder (the new dividend) is less than that of the divisor. In our
present case, the degree of the new dividend 6 is less than the degree of
the divisor x+ 2 and so we stop the process here. The last remainder (or
the new dividend at the last stage) 6 is the remainder of the division of
2x2 +3x+4 by x+2. The quotient is 2x−1 (the sum of the quotient terms
obtained in steps 2 and 4). We see that 2x2 + 3x+ 4 = (x+ 2)(2x− 1) + 6,
i.e., dividend = divisor × quotient + remainder.

Theorem 2.1 (Division algorithm for polynomials). If p(x) and
d(x) are any two polynomials with d(x) 6= 0, then we can find polynomials
q(x) and r(x) such that p(x) = d(x)× q(x) + r(x), where either r(x) = 0
or degree of r(x) < degree of d(x).

Here, q(x) is called the quotient and r(x) is called the remainder.

Remark: In Chapter 1, we have defined the HCF and the LCM of two
numbers. In a similar way, we can define the HCF and the LCM of two
polynomials. We have also discussed the Euclid’s algorithm for finding
the HCF of two numbers. A similar algorithm can be used for finding the
HCF of two polynomials.

Exercise 1. Find the quotient q(x) and the remainder r(x) when the
polynomial p(x) is divided by the polynomial d(x) and verify the division
algorithm in each of the following:

(i) p(x) = 3x3 − 5x2 + 10x+ 5, d(x) = 3x+ 1,

(ii) p(x) = x3 − 2x2 − 12, d(x) = 3− x,

(iii) p(x) = 2x3 − 9x2 + 25, d(x) = 2x− 5,

(iv) p(x) = x3 − 12x2 − 22, d(x) = x2 − 2x+ 1,

(v) p(x) = 4x4 + 3x3 − 2x+ 6, d(x) = x2 + x+ 2.







Chapter 5

Quadratic Equations

“They’re not tough, though. I merely take advantage of the blind
spots created when students assume too much. And they usually as-
sume too much.”
“Blind spots?”
“For instance, I give them a question that looks like a geometry prob-
lem, but is in fact an algebra problem. If all they’ve done is memorize
the problem sheets in their books–”

— Keigo Higashino, The Devotion of Suspect X

In this chapter, we shall discuss various methods of finding the roots of
a quadratic equation. We shall also discuss the relationship between the
roots and the coefficients of a quadratic equation, and the formation of a
quadratic equation when its roots are given.

Solution of Quadratic Equations

Definition 5.1. An equation of the form ax2+bx+c = 0, where a, b, c ∈ R
and a 6= 0, is called a quadratic equation with real coefficients in the
variable x.

In fact, any equation of the form p(x) = 0, where p(x) is a polynomial
of degree 2, is a quadratic equation. When the terms of p(x) are written
in descending order of their degrees, we obtain an equation of the form
ax2 + bx+ c = 0, where a 6= 0. Therefore, ax2 + bx+ c = 0, where a 6= 0,
is called the standard form of a quadratic equation.

Definition 5.2 (Roots of a quadratic equation). A real number α
is called a root of the quadratic equation ax2 + bx + c = 0, a 6= 0, if
aα2 + bα+ c = 0.
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We also say that x = α is a solution of the quadratic equation or that α
satisfies the quadratic equation. Note that a root of the quadratic equation
ax2 + bx+ c = 0 is a zero of the polynomial ax2 + bx+ c and vice-versa.
A quadratic equation cannot have more than two roots.

Exercise 1. Check whether the following are quadratic equations:
(i) x3 + 2015 = (x− 1)3, (ii) 2x2 + 3x− 1 = (2x+ 1)(x+ 5).

(Answer: (i) Quadratic. (ii) Not quadratic.)

Quadratic equations can be solved by (i) the method of factorisation, or
by (ii) the method of completing the square, also known as the Hindu
method or the Sreedharacharya’s method.

Solution of a quadratic equation by factorisation:

In this method, we find the roots of the quadratic equation ax2 +bx+c = 0,
a 6= 0, by factorising the polynomial ax2 + bx+ c into two linear factors
and then equating each factor to 0 (using corollary 1.13, page 29).

Exercise 2. Solve by the method of factorisation:

(a) x2 − 3x− 10 = 0, (Answer: −2, 5.)
(b) 2x2 − 5x+ 3 = 0, (Answer: 1, 3/2.)
(c) 100x2 − 20x+ 1 = 0. (Answer: 1/10, 1/10.)

Exercise 3. Solve:
4

x
− 3 =

5

2x+ 3
. (Answers: −2, 1.)

Solution of a quadratic equation by completing the square:

Consider the quadratic equation ax2 + bx + c = 0, a 6= 0. Dividing
throughout by a, we get

x2 +
b

a
x+

c

a
= 0

=⇒ x2 + 2× x× b

2a
+

(
b

2a

)2

−
(
b

2a

)2

+
c

a
= 0

=⇒
(
x+

b

2a

)2

=
b2 − 4ac

4a2

=⇒ x+
b

2a
=
±
√
b2 − 4ac

2a

=⇒ x =
−b±

√
b2 − 4ac

2a
.

Note: Completion of the square can also be done after multiplying the
given equation throughout by 4a.
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Quadratic formula:

The roots of the quadratic equation ax2 + bx+ c = 0, where a 6= 0, are

α =
−b+

√
b2 − 4ac

2a
and β =

−b−
√
b2 − 4ac

2a
.

Do you know? Évariste Galois was born on October 25, 1811, near
Paris. The first eleven years of his life were happy. Galois, at the age
of sixteen, attempted to enter the prestigious École Polytechnique, but
failed in the entrance examination. Commenting on his failure, Terquem
remarked, “A candidate of superior intelligence is lost with an examiner
of inferior intelligence.” After this, things started to go very bad for
Galois. On April 2, 1829, Galois’ father committed suicide. He once
again tried to enter the École Polytechnique, but again failed under some
rather controversial circumstances. In one last desperate effort to gain
recognition, in 1831, he had sent a memoir on the general solution of
equations to the Academy of Sciences. Moreover, Galois’ proof was, to
say least, sketchy. Poisson, after reading Galois’ memoir, remarked

We have made every effort to understand Mr. Galois’ proof.
His arguments are not clear enough, nor developed enough,
for us to be able to judge their correctness . . .

Galois’ paper was rejected for publication. In May 1832, Galois had a
brief love affair with a young woman. He broke of the affair on May 14,
and this appears to be the cause of subsequent duel that proved fatal to
Galois. Galois died on May 31, 1832 at the age of 20. Fourteen years
later, in 1846, Galois’ work was finally published. What he proved in his
paper was that for any n ≥ 5, there is no algebraic formula, involving
only the four basic arithmetic operations and the taking of roots, that
gives the solutions to any polynomial equation of degree n.

Exercise 4. Solve by method of completing the square:

4x2 − 2(a2 + b2)x+ a2b2 = 0.
(
Answers: a2/2, b2/2.

)

Exercise 5. Solve by using quadratic formula:

abx2 + (b2 − ac)x− bc = 0 (ab 6= 0). (Answers: c/b, −b/a.)

Exercise 6. Factorise the quadratic polynomial ax2 + bx + c, where
a, b, c ∈ R and a 6= 0, by using quadratic formula. State the conditions
under which the polynomial can or cannot be factorised over R.







Chapter 9

Construction

All ornament should be based upon a geometrical construction.

— Owen Jones, The Grammar of Ornament

As far as possible, only two geometrical instruments, namely a ruler and a
compass, will be used in geometrical construction. The analysis part of a
construction is given only to reveal the clues leading to the construction
process and may be omitted.

Division of a Line Segment in a given Ratio

Recall that a point C on a line segment AB is said to divide AB internally
in the ratio m : n if AC : CB = m : n. There are two methods for
dividing a given line segment internally in a given ratio, one based on the
Thales’ theorem (basic proportionality theorem) and the other based on
the property of similar triangles.

Example 1. Draw any line segment and divide it internally in the ratio
3 : 5. Write the steps of construction. Also, justify the construction.

Solution: (Based on the Thales’ theorem)

A BC

X

P1
P2

P3
P4

P5
P6

P7
P8

Steps of construction:

(1) Draw a line segment AB of any length.



Division of a Line Segment in a given Ratio Construction | 279

(2) Draw a ray AX inclined to AB at an acute angle.

(3) Mark eight (= 3 + 5) points P1, P2, . . . , P8 on AX such that AP1 =
PiPi+1 for all i = 1, 2, . . . , 7.

(4) Join P8B and through the point P3 draw a line parallel to P8B meeting
AB at C.

Then C is the point on AB such that AC : CB = 3 : 5.

Justification: In 4ABP8, by construction, we have P3C‖P8B. So, by
Thales’ theorem, we have

AC : CB = AP3 : P3P8.

But, by construction, we have AP3 : P3P8 = 3 : 5.
Hence, AC : CB = 3 : 5.

Example 2. Draw a line segment AB and divide it in the ratio 4 : 3. Write
the steps of construction. Also, give the justification of the construction.

Solution: (Based on the property of the similarity of triangles)

A BC

X

Y

P1
P2

P3
P4

Q1
Q2

Q3

Steps of construction:

(1) Draw a line segment AB of any length.

(2) Draw a ray AX inclined to AB at an acute angle.

(3) Draw a ray BY parallel to AX so that ∠ABY = ∠BAX.

(4) Mark points Pi’s (i = 1, 2, 3, 4) on AX and Qj ’s (j = 1, 2, 3) on BY
such that AP1 = PiPi+1 = BQ1 = QjQj+1 for all i = 1, 2, 3 and
j = 1, 2.

(5) Join P4Q3 intersecting AB at C.
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Then C is the point on AB such that AC : CB = 4 : 3.

Justification: In 4ACP4 and 4BCQ3,

∠P4AC = ∠Q3BC (∵ AP4‖BQ3)

and ∠ACP4 = ∠BCQ3 (vertically opposite angles).

By AA similarity criterion, we have 4ACP4 ∼ 4BCQ3.

∴ AC : CB = AC : BC = AP4 : BQ3 = 4 : 3.

Note: In the following, by construction, we mean construction by using
only a straightedge (with no markings) and a compass.

(i) (Doubling the Cube) It is impossible to construct a cube with precisely
twice the volume of a given cube.

(ii) (Trisecting an Angle) It is impossible to trisect any given angle θ.

(iii) (Squaring the Circle) It is impossible to construct a square whose
area is precisely the area of a given circle.

Exercise 3. To divide a line segment AB in the ratio m : n (where m
and n are positive integers), first a ray AX is drawn so that ∠BAX is an
acute angle and then at equal distances points are marked on the ray AX.
What is the minimum number of these points? (Answer: m+ n.)

Exercise 4. To divide a line segment AB in the ratio 7 : 9, a ray
AX is drawn first such that ∠BAX is an acute angle and then points
P1, P2, P3, . . . are located at equal distances on the ray AX. Which point
is then joined to the point B? (Answer: P16.)

Exercise 5. Construct a triangle in which its perimeter is given and its
three sides are in the ratio 2 : 3 : 4.

Hint: Draw a line segment PQ equal in length to that of the perimeter
of the triangle. Divide PQ in the ratio 2 : 3 : 4 so that PB : BC : CQ =
2 : 3 : 4. With centre B and radius BP , draw an arc. With centre C and
radius CQ, draw an arc intersecting the previous arc at A. Then ABC is
the required triangle.

Exercise 6. Divide a line segment of length 6 cm in the ratio
2√
3

:
√

3.

Hint: The given ratio is equal to 2 : 3.

Exercise 7. Two line segments AB and AC include an angle of 60◦ where
AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC,

respectively such that AP =
3

4
AB and AQ =

1

4
AC. Join P and Q and

measure the length PQ. (Answer: 3.25 cm.)







Chapter 13

Statistics

“Data! Data! Data!” he cried impatiently. “I can’t make bricks
without clay.”

— Arthur Conan Doyle, The Adventure of Sherlock Holmes

We know that statistics deals with collection, compilation, analysis and
interpretation of data. Statistics gives information which are of representa-
tive nature and do not pertain to information on particular individuals. In
this chapter, we discuss the measures of central tendency and the measures
of location for grouped data.

Measures of Central Tendency

Definition 13.1 (Measure of central tendency). A measure of central
tendency is the value of the variate around which the other variate values
are supposed to cluster.

Recall that when the number of observations is very large, data are con-
densed into groups called classes or class intervals. The boundaries of a
class are called class limits. The half of the sum of the lower limit and the
upper limit of a class is called the class mark or mid value of the class.
The number of observations lying in a class is called the frequency of the
class.

In a grouped frequency distribution, all the frequencies are distributed in
different classes. The sum of all the frequencies of all the classes is called
the size of the sample or the population.

For a continuous grouped frequency distribution in which the upper limit
of a class is the lower limit of the following class, usually an item equal to



444 | Statistics Measures of Central Tendency

the upper limit of a class is excluded from that class but an item equal to
the lower limit of a class is included in that class.

Remark: The frequency of each class interval is assumed to be centred
around its mid value. So, the mid value (or class mark) of each class is
chosen to represent the observations falling in that class.

Do you know? One day, in 1939, a graduate student at the University
of California, Berkeley arrived late for a class. He found two problems
on the blackboard and assumed them to be homework problems. The
problems seemed to be a little harder than usual, but a few days later
he submitted the complete solutions for the problems. About six weeks
later, one Sunday morning, he received a visit from the professor, who
informed him that he had prepared one of his solutions for publication
in a mathematical journal. The problems he had solved were in fact
two famous unsolved problems in statistics. The professor wrote the
problems as examples of unsolved problems. The student was none
other than George Dantzig, the man who later formulated the simplex
method in linear programming. Linear programming is a mathematical
technique for optimization of an outcome (such as maximizing profit and
minimizing cost).

Definition 13.2. For a grouped frequency distribution having x1, x2, . . . , xn
as mid values of the classes with respective frequencies f1, f2, . . . , fn,

(i) the weighted arithmetic mean is the quantity x given by

x =
x1f1 + x2f2 + · · ·+ xnfn

f1 + f2 + · · ·+ fn
=

1

N

n∑

i=1

xifi, where N =

n∑

i=1

fi,

(ii) the weighted geometric mean, denoted by G, is

G =
(
xf11 x

f2
2 · · ·xfnn

) 1
f1+f2+···+fn =

(
n∏

i=1

xfii

) 1
N

, where N =
n∑

i=1

fi,

(iii) the weighted harmonic mean, denoted by H, is given by

f1 + · · ·+ fn
H

=
n∑

i=1

fi
xi

or
1

H
=

1

N

n∑

i=1

fi
xi
, where N =

n∑

i=1

fi.

Remark: A ≥ G ≥ H, where A is the arithmetic mean, G is the geometric
mean and H is the harmonic mean.
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Exercise 12. The following is the frequency distribution of marks obtained
by 60 students in mathematics.

Marks 0− 10 10− 20 20− 30 30− 40 40− 50 50− 60 60− 70

No. of
students 4 8 11 15 12 7 3

(i) Find the mean, the median and the mode of the data given above.
Compare and interpret the three measures of central tendency.

(ii) Find the lower and the upper quartiles, the 8th decile and the 13th

percentile for the given data. Interpret these measures of location.

(iii) Draw both ogives for the given data. Determine the median, the 8th

decile and the 13th percentile from the graph.

Hint: Mean = 34.33. Median = 34.67. Mode = 35.71. Q1 = 22.73.
Q3 = 45.83. D8 = 48.33. P13 = 14.75. On an average a student obtained
the mean mark. About half the students scored marks less than the
median mark and the other half scored marks more than the median mark.
Maximum number of students scored near the modal mark.

Table 1. Cumulative frequency distribution of the less than type.

Marks obtained Number of students

Less than 10 4
Less than 20 4 + 8 = 12
Less than 30 12 + 11 = 23
Less than 40 23 + 15 = 38
Less than 50 38 + 12 = 50
Less than 60 50 + 7 = 57
Less than 70 57 + 3 = 60

In Table 1 above, 10, 20, . . . , 70 are the upper limits of the respective
classes. Plot the points (10, 4), (20, 12), etc., and join them by free hand to
get the less than ogive (or cumulative frequency curve of the less than type).

Table 2. Cumulative frequency distribution of the more than type.

Marks obtained Number of students

More than or equal to 0 60
More than or equal to 10 60− 4 = 56
More than or equal to 20 56− 8 = 48
More than or equal to 30 48− 11 = 37
More than or equal to 40 37− 15 = 22
More than or equal to 50 22− 12 = 10
More than or equal to 60 10− 7 = 3
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In Table 2 above, 0, 10, . . . , 60 are the lower limits of the respective classes.
Plot the points (0, 60), (10, 56), etc., and join them by free hand to get the
more than ogive (or cumulative frequency curve of the more than type).

The less than and the more than ogives of the given data are shown below.

C
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u
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ve
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eq
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en

cy

Less than ogiveMore than ogive

Class limits
O

X

Y

L(48.3, 12)

M(14.8, 52.2)

10 20 30 40 50 60 70

10

20

30

40

50

60

A(34.7, 30)

C(14.8, 7.8)

B(48.3, 48)

13N
100

N
2

8N
10

Figure 13.1: Ogives.

The less than ogive and the more than ogive of the given data intersect at
a point A. Median is the x-coordinate of the point A. Mark points B and
C on the less than ogive whose y-coordinates are 8N

10 and 13N
100 respectively.

D8 and P13 are the x-coordinates of the points B and C respectively.
Also, D8 and P13 are the x-coordinates of the points L and M (see figure
above) on the more than ogive respectively. Note that the corresponding

y-coordinates of the points L and M on the more than ogive are (10−8)N
10

and (100−13)N
100 respectively.

Exercise 13. The more than ogive curve and the less than ogive curve of
a frequency distribution intersect each other at at the point (30, 50).

(a) What is the median of the distribution? (Answer: 30.)

(b) What is the size of the population? (Answer: 100.)

(c) If the mean is 31, estimate the mode of the distribution.(Answer: 28.)

Exercise 14. If the mean and the median of a frequency distribution
differs by 1.25, estimate the difference between the mean and the mode
using Pearson’s empirical formula. (Answer: 3.75.)
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Exercise 15. Find the mean, the median, the mode, the lower and the
upper quartiles, the 7th decile and the 59th percentile of the following
distribution of daily savings of 106 workers.

Daily Savings (in |) Number of workers

0.1− 4.9 5
5.1− 9.9 11

10.1− 14.9 26
15.1− 19.9 10
20.1− 24.9 21
25.1− 29.9 13
30.1− 34.9 9
35.1− 39.9 6
40.1− 44.9 3
45.1− 49.9 2

Draw the less than and the more than ogives for the given data. Determine
the median, the lower quartile and the upper quartile from the graph.

Hint: Convert the given discontinuous class intervals into continuous ones

by subtracting
5.1− 4.9

2
= 0.1 from the lower limit and adding 0.1 to the

upper limit of each class. Mean = 20.42. Median = 20.24. Mode = 12.42.
Q1 = 12.02. Q3 = 27.50. D7 = 25.46. P59 = 22.51.

Exercise 16. For the following frequency distribution, the mode is 26
and the median is 22.4. Find the values of the unknown entries a and b,
and then calculate the mean of the distribution.

Class Frequency

0− 8 15
8− 16 13
16− 24 15
24− 32 a
32− 40 b
40− 48 10

Hint: The modal class is 24 − 32 since 26 lies in this class. Using the
formula for finding mode, we get 2a+ b = 45. The median class is 16− 24
since 22.4 lies in this class. Using the formula for finding median, we get
a+ b = 27. Solving the equations, we get a = 18, b = 9. Mean = 22.3.
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Exercise 17. Find the values of the unknown entries a, b, c, d, e, f , and
hence find the mean, the median and the mode for the following frequency
distribution.

Class Frequency Cumulative Frequency

0− 8 15 a
8− 16 b 28
16− 24 15 c
24− 32 d 61
32− 40 e 70
40− 48 10 f

Hint: a = 15, b = 28−a, c = 28+15, d = 61− c, e = 70−61, f = 70+10.
Mean = 22.3. Median = 22.4. Mode = 26.

Exercise 18. Which measure of central tendency will be the most suitable
in each of the following cases? Justify your answer in each case.

(1) To determine the productivity of a field using the data of the yield of
the field for the past twenty years.

(2) To determine whether the literacy rate is the maximum in the age
group 6 years to 14 years.

(3) To find the average of the marks obtained by the students in an
examination.

(4) To find the average of the marks obtained by most of the students in
an examination.

(5) To find the the mark above which only half the students scored in an
examination.

(6) To find the typical productivity rate of workers.

(7) To find the average wage in a country.

(8) To find the most popular T.V. programme being watched.

(9) To determine the colour of the vehicle used by most of the people.

Hint: The measure of central tendency under study should possess the
representative character of the data. Depending on the nature of the
information that one is looking for, the appropriate measure of central
tendency is to be fixed. Mean is suitable for (1), (3). Median is suitable
for (5), (6), (7). There may be extreme values in (6) and (7). The mean
is greatly affected by extreme values. So, rather than the mean, we take
the median as a better measure of central tendency. Mode is suitable for
(2), (4), (8), (9).
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Exercise 13.1

1. The following are the numbers of children in a locality of 30 families.

7, 4, 0, 4, 2, 1, 2, 5, 3, 1, 4, 6, 2, 1, 4, 3, 2, 0, 1, 2, 5, 4, 2, 3, 2, 2, 1, 2, 1, 3.

Find the average number of children per family.

Solution: The average number of children per family

=
total number of children in the locality

number of family

= 7+4+0+4+2+1+2+5+3+1+6+2+1+4+3+2+0+1+2+5+4+2+3+2+2+1+2+1+3
30

=
79

30
= 2.63.

Remark: For an ungrouped data with variates x1, x2, . . . , xn, the

arithmetic mean (AM), x =
x1 + x2 + · · ·+ xn

n
.

2. A shop dealing in electric goods makes the following record of T.V. sets
sold during a particular year.

Month No. of T.V. sets sold

January 14
February 17
March 16
April 12
May 7
June 6
July 8
August 9
September 6
October 14
November 15
December 18

Find the average number of T.V. sets sold per month.

Solution: The average number of T.V. sets sold per month

=
total number of T.V. sets sold in a year

number of months in a year

=
14 + 17 + 16 + 12 + 7 + 6 + 8 + 9 + 6 + 14 + 15 + 18

12

=
142

12
= 11.83.
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3. The following is the record of weights of children at the time of their
birth as maintained in a maternity ward during a particular year.

Weight of a child in kg No. of children

2.5 12
3.0 175
3.5 156
3.8 42
4.0 15
4.2 5

Find the average (mean) weight of a child at the time of birth.

Solution: The given data is modified as below:

Weight of the children in kg No. of children
fixi(xi) (fi)

2.5 12 30
3.0 175 525
3.5 156 546
3.8 42 159.6
4.0 15 60
4.2 5 21

N =
6∑
i=1

fi = 405
6∑
i=1

fixi = 1341.6

So, the mean weight of a child at the time of birth is given by

x =
1

N

6∑

i=1

fixi =
1

405
× 1341.6 = 3.31 kg.

4. Five coins are simultaneously tossed 1000 times, and at each toss the
number of heads was observed. The number of tosses during which
0, 1, 2, 3, 4, 5 heads were obtained are shown in the table below. Find
the number of heads per toss.

No. of heads per toss No. of tosses

0 38
1 144
2 342
3 287
4 164
5 25







Chapter 14

Probability

Since in action it frequently happens that no delay is permissible, it
is very certain that, when it is not in our power to determine what
is true, we ought to act according to what is most probable.

— René Descartes, Discourse on the Method

Probability is the measure of chance of occurrence or non occurrence of an
event. The definition of probability is given in three seemingly different
forms, namely

1. the empirical or experimental definition,
2. the classical or mathematical or a priori definition of probability

due to Pierre-Simon Laplace, and
3. the set theoretic or axiomatic or modern definition

due to Andrey Kolmogorov.

The values of the probability of an event as calculated from these three
seemingly different stand points converge to the same value as the number
of trials becomes larger and larger. In this chapter, we discuss the classical
definition.

Classical Definition of Probability

Definition 14.1 (Random or non-deterministic experiment). An
experiment, whose result cannot be uniquely predicted even if the previous
results of the same experiment conducted under similar conditions are all
known is called a random or more precisely a non-deterministic experiment.

A non-deterministic experiment is also sometimes known as a trial. Note
that one or more trials may constitute an experiment. A possible result of
a random experiment is called its outcome or sample point.
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Tossing of a coin is a non-deterministic experiment. In tossing a coin 10000
times, we may get 5109 heads and 4891 tails. With this prior information,
we cannot the predict the outcome of the 10001th toss beforehand.

Definition 14.2 (Sample space and event). The totality of all the
possible outcomes of an experiment is called the sample space of the
experiment. Any component of a sample space is an event.

In tossing a coin, the possible outcomes are a head (denoted by H) and
a tail (denoted by T ). If S denotes the collection of these two outcomes,
i.e., S = {H,T}, then S is the sample space. We write {H} to denote
the event of getting a head, {T} to denote the event of getting a tail and
{H,T} to denote the event of getting a head or a tail. The sample space of
tossing two coins once is {(H,H), (H,T ), (T,H), (T, T )}, where {(H,T )}
is the event of getting a head in the first coin and a tail in the second coin,
etc. But for the sake of simplicity, we usually write this sample space as
{HH,HT, TH, TT}. Here, {HH} is the event of getting head in both the
tosses, {HT, TH} is the event of getting only one head (or one tail), etc.
Note that the event {HT} is different from the event {TH}.
Example 1. Write down the sample space of tossing a coin and rolling a
die simultaneously.

Answer: The sample space of tossing a coin and rolling a die simultane-
ously is {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}.
Remark: Let us consider the experiment of tossing a coin and rolling a
die simultaneously. The coin may show head (H) or tail (T ). When the
coin shows H, the die may show any of the six numbers 1, 2, 3, 4, 5 and 6.
Same is the case when the coin shows T . So, there are 2× 6 = 12 possible
outcomes.

H

T

1

2

3

4

5

6

6

5

4

3

2

1

T1

T2

T3

T4

T5

T6

H6

H5

H4

H3

H2

H1 {

2× 6 = 12 possible outcomes

Fig: 14.1 Tree diagram for tossing a coin and rolling a die simultaneously.
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Example 2. Write down the sample space of choosing two balls from an
urn containing 2 red balls and 3 blue balls.

Answer: If R1, R2 denote the red balls and B1, B2, B3 denote the blue
balls, then the sample space is

{R1R2, R1B1, R1B2, R1B3, R2B1, R2B2, R2B3, B1B2, B1B3, B2B3}.
The order is not important, i.e., R1R2 is the same as R2R1 and so on.

Example 3. Write down the sample space of choosing two balls one after
another from an urn containing 2 red balls and 3 blue balls.

Answer: If R1, R2 denote the red balls and B1, B2, B3 denote the blue
balls, then the sample space is

{R1R2, R1B1, R1B2, R1B3, R2R1, R2B1, R2B2, R2B3, B1R1, B1R2,
B1B2, B1B3, B2R1, B2R2, B2B1, B2B3, B3R1, B3R2, B3B1, B3B2}.

The order is important, i.e., R1R2 and R2R1 are different outcomes, etc.

Definition 14.3 (Equally likely events). Events are said to be equally
likely if there is no valid reason to say that one event has more chance to
occur than the others.

In tossing an unbiased coin, there is no valid reason to say that a head (or
a tail) has more chance to turn up than the other. The events {H} and
{T} are equally likely.

Exercise 4. Which of the following experiments have equally likely out-
comes? Explain.

(a) A boy attempts to win the Fields Medal. He wins or does not win.
(b) A girl participates in an examination. She fails or passes.
(c) A baby is born. It is a boy or a girl.

Hint: (a) No. (b) No. (c) Yes.

Definition 14.4 (Mutually exclusive events). Events are said to be
mutually exclusive if the happening of one prevents the happening of all
the others.

In tossing a coin, one of the two faces will turn up. If H turns up, T will
not turn up and vice-versa. {H} and {T} are mutually exclusive events.

Definition 14.5 (Independent events). Two events are said to be
independent if the occurrence of one has no effect on the occurrence of
the other.
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If a coin is tossed twice, the event of getting a head in the first toss and
the event of getting a tail in the second toss are independent. Here, the
sample space is {HH,HT, TH, TT}, the event of getting a head in the
first toss is {HH,HT} and the event of getting a tail in the second toss is
{HT, TT}.
Example 5. Are the two events {H} and {T} in tossing a coin indepen-
dent? Justify your answer.

Answer: The two events {H} and {T} in tossing a coin are not indepen-
dent. In tossing a coin, the happening head prevents the happening of
tail, i.e., if H turns up T will not turn up and vice-versa. In other words,
the occurrence of head has affected the occurrence of tail in tossing a coin,
etc. Hence, {H} and {T} are not independent.

Definition 14.6 (Elementary and compound events). An event hav-
ing only one outcome of the experiment is called an elementary (or simple
or atomic) event. If an event has more than one outcome of the experiment,
it is called a compound event.

The elementary events of a sample space are always mutually exclusive.
The sample space of tossing a coin twice is {HH,HT, TH, TT}. There
are four elementary events corresponding to this sample space. They are
{HH}, {HT}, {TH} and {TT}. The event {HT, TT} is a compound
event formed by two elementary events {HT} and {TT}.
Definition 14.7 (Exhaustive events). A set of events is said to be
exhaustive if all the possible outcomes are included.

In tossing a coin once, the two events {H} and {T} constitute a set of
exhaustive events.

Definition 14.8 (Favourable outcomes). Out of the set of exhaustive
outcomes, those entailing the occurrence of a particular event are called
the favourable ones for the event.

In tossing a coin twice, out of the four exhaustive outcomes, only three
are favourable to the event of getting at least one H.

Definition 14.9 (Classical or mathematical or a priori definition
of probability due to Laplace). Out of n exhaustive, equally likely
and mutually exclusive outcomes, if m are favourable to the event A, then
the classical (or theoretical) probability of the occurrence of the event A
denoted by P (A) is the ratio m : n, i.e.,

P (A) =
number of outcomes favourable to A

total number of possible outcomes
=
m

n
.
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Exercise 6. 0 ≤ P (A) ≤ 1 for any event A. Justify.

Hint: Out of n exhaustive, equally likely, mutually exclusive outcomes, if
m are favourable to A, then 0 ≤ m ≤ n.

Example 7. What is the probability that a number selected at random
from the first 10 natural numbers is a prime number?

Solution: If S is the sample space and E the event of selecting a prime
number, then

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, E = {2, 3, 5, 7}.

∴ P (E) =
n(E)

n(S)
=

number of elements in E

number of elements in S
=

4

10
=

2

5
.

Definition 14.10 (Sure and impossible events). An event of proba-
bility 1 is called a sure (or certain) event and an event of probability 0 is
called an impossible event.

In tossing a die, the event of getting a number less than 10 is a sure event
whereas the event of getting 10 is an impossible event.

Definition 14.11 (Complementary events). Two events are said to be
complementary if the sum of their probabilities is 1. The complementary
event of an event A is denoted by A or Ac.

In tossing a die, the event of getting a number not greater than 4 and the
event of getting a number greater than 4 are complementary.

Exercise 8. If A is any event, then P (A) + P (A) = 1, where A is the
complement of A. Justify.

Hint: Out of n exhaustive, equally likely, mutually exclusive outcomes, if
m are favourable to A, the remaining n−m outcomes are not favourable
to the event A.

Notes:

1. If there are n outcomes of a random experiment, then there are 2n

possible events.

2. When we say “independent events,” we are referring to events with the
same sample space. The same is the case with “equally likely events”,
“mutually exclusive events”, “exhaustive events”, etc.

3. In classical probability, we assume that all outcomes of a random
experiment are equally likely.
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4. The probability of an event may be an irrational number. See example
16 on page 481.

5. The sum of the probabilities of all the elementary events of an experi-
ment is 1.

6. The sum of the probabilities of mutually exclusive events forming an
exhaustive system is 1. In particular, if A, B and C are mutually
exclusive and exhaustive events, then P (A) + P (B) + P (C) = 1.

7. If A and B are two events, then A ∪B denotes the event of happening
at least one of A and B, and AB (also denoted by A ∩B) denotes the
event of the combined occurrence of A and B.

8. Two events A and B are said to be independent if and only if P (AB) =
P (A) · P (B). Otherwise, A and B are called dependent events.

9. Mutually exclusive events have no common outcome.

10. Two independent events always have at least one common outcome if
they are not impossible events.

11. (Addition theorem) If A and B are mutually exclusive events, then

P (A ∪B) = P (A) + P (B).

In general, if A and B are any two events, then

P (A ∪B) = P (A) + P (B)− P (AB).

Exercise 9. Why is tossing a coin considered to be a fair way of deciding
which team should get the ball at the beginning of a football match?

Exercise 10. Two coins are tossed once. What is the probability of
getting three heads? (Answer: 0.)

Exercise 11. Two fair dice are rolled. What is the probability that the
sum of the points is at least 2? (Answer: 1.)

Exercise 12. In two independent tosses of a fair die the sum of the
outcomes was 9. What would be the probability that the first toss resulted
in 6? (Answer: 1/4.)

Exercise 13. A bag contains 30 balls out of which some are red, some
are blue and remaining are black. If the probability of drawing a red ball
is 11/15 and that of a blue ball is 1/10, then how many black balls are
there in the bag. (Answer: 5.)

Example 14. Khamba and Thoibi are friends. Find the probability that
(i) they have different birthdays; (ii) they have the same birthday.
Assume that they were not born on a leap year.
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Solution: Khamba’s birthday can be any day of the 365 days of the year.
Also, Thoibi’s birthday can be any day of the year. We assume that these
365 outcomes are equally likely.

(i) If Khamba’s birthday is different from Thoibi’s birthday, the number
of favourable outcomes of Thoibi’s birthday = 365− 1 = 364.

Let E be the event that they have different birthdays. Then the probability

that they have different birthdays, P (E) =
364

365
.

(ii) The event that they have the same birthday and the event that they
have different birthdays are complementary. Hence, the probability that

they have the same birthday = P (E) = 1− P (E) = 1− 364

365
=

1

365
.

Do you know? In a group of people, what is the probability that
two of them have the same birthday? This is the birthday problem or
birthday paradox. The probability is 100% when the number of people
is more than 366 as there are only 366 possible birthdays. However,
the probability reaches 99.9% with just 70 people and 50% with just
23 people. There is a cryptographic attack called the birthday attack
that exploits the mathematics behind the birthday problem. Note that
the birthday problem is different from finding the probability that, in a
group of people, someone has the same birthday as you (or a particular
person). In order to get more that 50% probability in this case, the
number of people must be at least 253.

Example 15. If a leap year is selected at random, what is the probability
that it will have 53 Sundays?

Solution: We know that a leap year has 366 days, i.e., 52 weeks and 2
days. These two days will be two consecutive days of a week. The sample
space for the possible pairs of days is

S = {(Sunday,Monday), (Monday,Tuesday), (Tuesday,Wednesday),

(Wednesday,Thursday), (Thursday,Friday), (Friday,Saturday),

(Saturday,Sunday)}.

Here, (Sunday,Monday) and (Saturday, Sunday) are the favourable cases.

Therefore, the required probability =
number of favourable cases

total number of cases
=

2

7
.

Remark: In the Gregorian calendar, those years exactly divisible by 100,
but not by 400, are not leap years. For example, the years 1700, 1800,
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and 1900 are not leap years, but the year 2000 is a leap year. A leap year
having 53 Sundays must start on a Saturday or a Sunday. The distribution
of days of the week repeats exactly every 400 years. Within these 400
years, there are 97 leap years, out of which 13 start on a Saturday and 15
start on a Sunday. So, the probability that a leap year chosen at random
has 53 Sundays is 28/97 rather than 2/7 = 28/98.

Example 16. A circular region of radius 7 m is inside a rectangular
field of dimension 70 m × 21 m. A cow is grazing in the field. Find the
probability that the cow is grazing in the circular region.

Solution: The cow is equally likely to graze anywhere in the field. The
area of the entire field where the cow can graze = 70× 21 m2. Also, the
area of the circular region = π × 72 = 49π m2.

The probability that the cow is grazing in the circular region

=
area of the circular region

area of the rectangular field
=

49π

70× 21
=

π

30
.

A note on playing cards: There are 52 cards in a pack (or deck) of
cards which are divided into 4 suits of 13 cards each. The cards in each
suit are Ace, King, Queen, Jack (or Knave), 10, 9, 8, 7, 6, 5, 4, 3 and 2.
King, Queen and Jack are the face cards. Ace, King, Queen and Jack are
the power cards. The colours and number of cards in each of the four suits
in a pack are given below:

Suit name Colour
Number of Cards

Ace Face Cards Numeral Cards Total

Heart (♥) Red 1 3 9 13
Diamond (♦) Red 1 3 9 13
Club (♣) Black 1 3 9 13
Spade (♠) Black 1 3 9 13

Exercise 17. What is the probability of drawing a Queen from a pack of
well-shuffled cards. (Answer: 1/13.)

Example 18. If a coin is tossed twice, the event of getting a head in the
first toss and the event of getting a tail in the second toss are independent.
Prove it.

Solution: The sample space is {HH,HT, TH, TT}. Let A be the event
of getting a head in the first toss and B be the event of getting a tail in the
second toss. Then A = {HH,HT} and B = {HT, TT}. So, AB = {HT}.
Now,

P (A) =
2

4
=

1

2
, P (B) =

2

4
=

1

2
and P (AB) =

1

4
.
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Clearly, we see that P (A) ·P (B) =
1

2
× 1

2
=

1

4
= P (AB). This shows that

A and B are independent.

Exercise 19. Give one example of each of the following:

(a) Two events which are mutually exclusive but not independent.
(b) Two events which are independent but not mutually exclusive.
(c) Two events which are neither independent nor mutually exclusive.
(d) Two events which are both independent and mutually exclusive.

Independent Events and Independent Experiments

Two experiments are said to be independent if the outcome of one experi-
ment is not influenced in any way by the outcome of the other experiment;
otherwise they are said to be interdependent. The experiment of tossing
a coin and the experiment of rolling a die are independent experiments.
Now, consider two experiments – (i) drawing a card from a pack of cards,
(ii) drawing another card from the remaining cards. Here, the outcome of
the second experiment depends on the outcome of the first experiment.
Such experiments are said to be interdependent.

We now discuss the probability of an event in terms of the probabilities of
events in a sequence of experiments.

(a) Let us consider two independent experiments – (i) tossing a coin and
(ii) rolling a die.

Let A1 be the event of getting a head in the first experiment. Here, the

sample space is {H,T} and A1 = {H}. Clearly, P (A1) =
1

2
.

Let B2 be the event of getting 5 in the second experiment. Here, the

sample space is {1, 2, 3, 4, 5, 6} and B2 = {5}. Clearly, P (B2) =
1

6
.

A single composite experiment may be defined to consist of first performing
an experiment and then another experiment. Now, let us consider the
composite experiment of first tossing a coin and then rolling a die. This
experiment can be considered the same as the experiment of tossing a
coin and rolling a die simultaneously (because the two experiments are
independent). The sample space S is given by

S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}.

Let A be the event of getting head in the coin (with any outcome in the
die) and B be the event of getting 5 in the die (with any outcome in the
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coin).

We have A = {H1, H2, H3, H4, H5, H6} and B = {H5, T5}. So, it is easy

to see that P (A) =
6

12
=

1

2
and P (B) =

2

12
=

1

6
. Note that P (A) = P (A1)

and P (B) = P (B2).

The event AB is the simultaneous occurrence of the events A and B. It is
the event of getting head in the coin and 5 in the die. We have AB = {H5}.
Therefore, P (AB) =

1

12
.

Now, P (A) ·P (B) =
1

2
× 1

6
=

1

12
= P (AB). This shows that A and B are

independent events.

From the above discussion, we see that

P (A) = P (A1), P (B) = P (B2), P (AB) = P (A) ·P (B) = P (A1) ·P (B2).

We generalise the above observations and state the following result. The
proof of the result is beyond the scope of this book.

Let us consider two independent experiments. Let A1 be an
event in the first experiment. Let A be the event in the com-
posite experiment (involving the two independent experiments)
in which A1 occurs in the first experiment together with any
outcome in the second experiment. Let B2 be an event in the
second experiment. Let B be the event in the composite exper-
iment in which B2 occurs in the second experiment together
with any outcome in the first experiment. The event AB is the
concurrence of the event A and event B. In other words, AB
is the event in the composite experiment in which A1 occurs in
the first experiment and B2 occurs in the second experiment.

Then the following relations are true.

(1) P (A) = P (A1).

(2) P (B) = P (B2).

(3) P (AB) = P (A) · P (B).

(4) P (AB) = P (A1) · P (B2).

The relation (3) means that A and B are independent events in the com-
posite experiment. Note that the events A and A1 are different events
defined on different sample spaces; so are the events B and B2.
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(b) Let us consider an experiment of choosing a ball from an urn containing
2 white and 3 black balls. There are 2 white balls out of the 5 balls. If p1

is the probability of choosing a white ball, then p1 =
2

5
.

Again, let us consider a second experiment of choosing another ball from the
urn after the first experiment has been performed (and without replacing
the ball chosen in the first experiment). Now, there are 4 balls in the
urn but the number of white or black balls depends on the outcome of
the first experiment. This shows that the experiments are interdependent.
Suppose a white ball has been chosen in the first experiment. Then there
are 1 white and 3 black balls after the first experiment has been performed.
If p2 is the probability of choosing a black ball in the second experiment

after a white ball has been chosen in the first experiment, then p2 =
3

4
.

Now, let us consider an experiment of choosing two balls one after another
from an urn containing 2 white ball and 3 black balls. The sample space is

{W1W2,W1B1,W1B2,W1B3,W2W1,W2B1,W2B2,W2B3, B1W1, B1W2,
B1B2, B1B3, B2W1, B2W2, B2B1, B2B3, B3W1, B3W2, B3B1, B3B2},

where W1, W2 denote the white balls and B1, B2, B3 denote the black
balls.

Let A be the event that the first ball chosen is white (i.e., first a white
ball and then a ball of any colour are chosen). Let B be the event that
the second ball chosen is black (i.e., first a ball of any colour and then a
black ball are chosen).
Then A = {W1W2,W1B1,W1B2,W1B3,W2W1,W2B1,W2B2,W2B3}
and B = {W1B1,W1B2,W1B3,W2B1,W2B2,W2B3, B1B2, B1B3, B2B1,

B2B3, B3B1, B3B2}. Clearly, P (A) =
8

20
=

2

5
and P (B) =

12

20
=

3

5
.

The event AB is the concurrence of the events A and B. It is the event of

choosing first a white ball and then a black ball. Now, P (AB) =
6

20
=

3

10
because AB = {W1B1,W1B2,W1B3,W2B1,W2B2,W2B3}.

Let B|A denote the happening of B on the supposition that A has already
happened. Note thatB|A is not an event. However, B|Amay be considered
as the event {W1B1,W1B2,W1B3,W2B1,W2B2,W2B3} (i.e., the collection
of those outcomes in A in which the 2nd ball chosen is black) defined on

A as the sample space. So, P (B|A) =
6

8
=

3

4
.

P (B|A) is called the conditional probability of B given A. You will learn
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more about it in higher classes.

Note that P (A) = p1, P (B|A) = p2, but P (B) 6= p2.
Also, P (AB) = P (A) · P (B|A) = p1p2.

Here, P (AB) 6= P (A) · P (B), i.e., A and B are not independent events.

We generalise the above observations and state the following result. The
proof of the result is beyond the scope of this book.

Let us consider a sequence of experiments. If p1 is the prob-
ability of an event E1 in the first experiment and p2 is the
probability of an event E2 in the second experiment on the
supposition that E1 has happened. Then the probability that
both E1 and E2 will happen is p1p2.

Also, if p3 is the probability of an event E3 in a third experi-
ment after E1 and E2 have happened, then the probability that
all of E1, E2 and E3 will happen is p1p2p3 and so on for any
number of events.

The above result holds true even when the experiments are independent.

Example 20. Two coins are tossed simultaneously. Find the probability
of getting a head in the first coin and a tail in the second coin.

Solution: Let A be the event of getting a head in the first coin. Let
B be the event of getting a tail in the second coin. Clearly, we have

P (A) =
1

2
, P (B) =

1

2
. The happening of A does not affect the happening

of B and vice-versa. The events A and B are independent. So, the
probability of getting a head in the first coin and a tail in the second coin,

P (AB) = P (A)P (B) =
1

2
× 1

2
=

1

4
.

Example 21. Two balls are chosen from an urn containing two red balls
and three blue balls. Find the probability that both balls are blue.

Solution: The urn contains 2 red balls and 3 blue balls. Out of the 5
balls a blue ball can be chosen in 3 ways. So, the probability of choosing

a blue ball =
3

5
.

Assuming a blue ball has already been chosen, the urn now contains 2 red
balls and 2 blue balls. Out of the 4 balls a blue ball can be chosen in 2

ways. So, the probability that the second ball chosen is blue =
2

4
=

1

2
.

Hence, the probability that both the balls chosen are blue =
3

5
× 1

2
=

3

10
.
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Exercise 22. Two balls are chosen at random from an urn containing
two red balls and three blue balls. Find the probability that the balls are
of different colours.

Hint: Different balls can be chosen in two different ways – (i) first a
red ball and then a blue ball (ii) first a blue ball and then a red ball.
If A is the event of choosing first a red ball and then a blue ball, then

P (A) =
2

5
× 3

4
=

3

10
. If B is the event of choosing first a blue ball and

then a red ball, then P (B) =
3

5
× 2

4
=

3

10
. Note that P (A ∪ B) is the

probability of the happening of A or B. In the present case, it is the
probability that the two balls chosen are of different colours. Since A and

B are mutually exclusive, P (A∪B) = P (A) +P (B) =
3

10
+

3

10
=

6

10
=

3

5
.

Exercise 23. Two balls are drawn from an urn containing 3 red balls and
5 black balls. Find the probability that at least one ball is red.

Hint: The probability that both the balls drawn is black is
5

8
× 4

7
=

5

14
.

So, the probability that at least one ball is red = 1− 5

14
=

9

14
.

Exercise 24. Two cards are drawn from a pack of cards. Find the
probability that the first card is a King and the second card is a Queen.

Hint: The probability is
4

52
× 4

51
=

4

663
.

Exercise 25. From a pack of cards, two cards are drawn at random (one
after another without replacing). Find the probability that the first one is
a red face card and the second is a black face card. (Answer: 3/221.)

Exercise 26. A pack of card is dealt out.
(a) What is the probability that the fifth card dealt is a King?
(b) What is the probability that the first King occurs on the fifth card?

Hint: (a) The probability is
4

52
=

1

13
because we are not given any

information on what has happened in the previous deals. (b) None of
the first 4 cards dealt is a King and the 5th card dealt is a King. So, the

probability =

(
1− 1

13

)
·
(

1− 1

13

)
·
(

1− 1

13

)
·
(

1− 1

13

)
·
(

1

13

)
=

124

135
.

Exercise 27. A fair coin is tossed repeatedly. What is the probability of
getting a head in the third toss and a tail in the fourth toss? (Answer: 1/4.)
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(a, b), 2
[a, b], 2
cos, 302
cosec, 302
cot, 302
csc, 302
gcd(a, b), 2
lcm[a, b], 2
| x |, 31
π, 366
sec, 302
sin, 302
tan, 302
a | b, 1
a - b, 1
nth term of an AP, 184
xn + yn = zn, 255

AA similarity, 233
AAA similarity, 231
absolute value, see modulus
addition theorem, 479
additive identity, 27, 35
additive inverse, 27
algebraic methods, 108
algorithm, 2
AM, 185, 445, 458
angle of depression, 331
angle of elevation, 331
AP, 183, 198
area of a triangle, 356
areas of similar triangles, 248

arithmetic mean, see AM
arithmetic progression, see AP
associativity, 27, 35
assumed mean method, 445

basic proportionality theorem, 216
Baudhayan theorem, 254

cancellation law, 28
canonical decomposition, 14
Carnot’s theorem, 256
central tendency, 443
centroid, 348
change of origin and scale method,

445
change of origin method, 445
circle, 265
circumference, 366
closure, 27
collinearity, 357
common difference, 184
common tangents, 267
commutativity, 27, 35
complementary angles, 324
complementary events, 478
composite, 2, 15, 16, 24
compound events, 477
cone, 400
congruent, 213
consistent, 84
coprime, 2
cosecant, 301
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cosine, 301
cotangent, 301
cross-multiplication method, 109
cube, 400
cuboid, 400
cumulative frequency, 447
cyclic expression, 68
cyclic expressions, 68
cyclic factor, 69
cyclical replacement, 68
cylinder, 400

deciles, 449
dependent, 84
discriminant, 153
distance formula, 347
distributivity, 27
divisibility, 1
division algorithm, 41
divisors, 1

elementary events, 477
equally likely events, 476
Euclid’s algorithm, 5, 8
Euclid’s division lemma, 3
Euclid’s lemma, 14
Euler line, 358
event, 475
exhaustive events, 477

factor, see divisors
factor theorem, 51
factorial, 16
factorisation, 68
favourable outcomes, 477
Fermat’s last theorem, 255
Fibonacci sequence, 183
frustum, 430
fundamental theorem of arithmetic,

14

Galois, 152

GCD, see HCF
geometric progression, see GP
golden ratio, 157, 183
GP, 184
graph, 84
graphical method, 83
greatest common divisor, see HCF

harmonic progression, see HP
HCF, 2, 5, 14
hemisphere, 400
highest common factor, see HCF
Hindu method, 151
HP, 184

identity, 312
impossible events, 478
inconsistent, 84
independent events, 476
indeterminate, 107
integral root theorem, 59
irreducible, 7

LCM, 2, 14
least common multiple, see LCM
lemma, 2
line division

externally, 226, 348
internally, 226, 278, 347

linear equations in two variables, 83,
137

lower quartile, 449

median, 448
Menelaus’ Theorem, 237
mode, 448
modulus, 31, 36

graph, 31
multiple, 1
multiplicative identity, 27, 35
multiplicative inverse, 27, 30, 33
mutually exclusive events, 476
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non-deterministic experiment, 474

ogive, 452, 470

pair of linear equations, 83
parallelogram law, 34
percentiles, 450
pi, 366
polynomial

biquadratic, 39
cubic, 39
degree, 39
division algorithm, 41
linear, 39
monic, 39
quadratic, 39
quartic, 39
quintic, 39
quotient, 41
remainder, 41
value, 39
zero, 39, 40

prime, 1, 2, 14
prime factor, 68
probability, 474
Pythagoras theorem, 254

converse, 254
Pythagorean relations, 310
Pythagorean triples, 255

quadratic, 150
quadratic equations, 150
quadratic formula, 152
quartiles, 449
quotient, 3
quotient relations, 310

rational root theorem, 59
real number, 27

field properties, 27
representation, 28
square, 36

reciprocal, 35
reciprocal relations, 310
relatively prime, see coprime
remainder, 3
remainder theorem, 51
roots of a quadratic equation, 150

sample space, 475
secant, 265, 301
section formula, 346
sectors of a circle, 375
segments of a circle, 375
sequence, 183
similar, 213
similarity of triangles, 216, 231
sine, 301
SOH-CAH-TOA, 302
sphere, 400
Sreedharacharya’s method, 151
SSS similarity, 233
standard decomposition, 14
step deviation method, 445
Stewart’s theorem, 256
sure events, 478
surface area, 400

tangent, 265, 301
Thales’ theorem, 216

converse, 216
triangle inequality, 32
trigonometric ratios, 301

unique factorisation theorem, 14
upper quartile, 449

volume, 400

weighted arithmetic mean, 444
weighted geometric mean, 444
weighted harmonic mean, 444

zero, 1, 27, 30, 36
of a polynomial, see polynomial


