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Preface

We have written this book bearing in mind the needs of those students
of class X who opt Higher Mathematics. This book is meant to help the
students get all the materials they need without having to rely on other
books. It is made in a compact and comprehensive form and it includes all
the details a student needs to understand the subject matters properly. In
order to make the readers familiarise themselves with the question pattern,
we have added some question papers of the HSLC Examination along with
their solutions.

We would like to thank those who gave suggestions, advice and support. In
particular, we wish to thank Hidam John Angom for his various comments
and suggestions.

We welcome feedbacks and suggestions from our readers for further im-
provement of this book.

Thoubal Authors
September 2018 Lousing Chaphu



Notations

N the set of natural numbers
Z the set of integers
Q the set of rational numbers
R the set of real numbers

⇐⇒ if and only if
=⇒ implies
∀ for all
∃ there exists
x ∈ A the element x belongs to the set A
A ∪B the union of A and B
A ∩B the intersection of A and B
n! the product of first n natural numbers
(x, y) the coordinates of a point
� Q.E.D. (quod erat demonstrandum), that which was to be

demonstrated
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Chapter 1

Binary Operations

“But that’s – I’m sorry, but that’s completely ridiculous! How can
I possibly prove it doesn’t exist? Do you expect me to get hold of
– of all the pebbles in the world and test them? I mean, you could
claim that anything’s real if the only basis for believing in it is that
nobody’s proved it doesn’t exist!”

— J. K. Rowling, Harry Potter and the Deathly Hallows

A binary operation on a set is a rule that combines two elements of the
set to produce a new element of the set. The usual addition, subtrac-
tion, multiplication and division are the most commonly known binary
operations.

Binary Operation on a Set

Definition 1.1 (Binary operation). Let S be a non-empty set and ◦
be a mapping of the cartesian product S × S to S. Then ◦ is called a
binary operation on the set S.

Thus, a binary operation ◦ on a set S assigns to each ordered pair (x, y) ∈
S × S a uniquely determined element x ◦ y ∈ S. The element x ◦ y is the
◦-image of the pair (x, y); it is called the composite (or product) of x and
y under ◦.
The usual addition of natural numbers is a binary operation on N. For
each ordered pair (x, y) ∈ N × N, the element x + y ∈ N is uniquely
defined.

If ◦ is a binary operation on a set S and a, b ∈ S are any two elements,
then a ◦ b ∈ S, by definition. Sometimes we express this fact by saying
that S is closed under ◦.
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Definition 1.2 (External binary operation). Let A and S be non-
empty sets and f : A×S → S be a mapping. Then f is called an external
binary operation on S over A.

Thus, an external binary operation f on S over A assigns to each ordered
pair (a, x) ∈ A × S a uniquely defined element f(a, x) ∈ S. The scalar
multiplication of vectors is an example of an external binary operation on
the set of vectors over the set of scalars.

In the remainder of this chapter, we will restrict our discussion to binary
operation as defined in definition 1.1 only.

Definition 1.3 (Algebraic structure). A set equipped with one or
more binary operations is called an algebraic structure.

If ◦ is a binary operation on a set S, then the pair (S, ◦) is an algebraic
structure. The set R of real numbers equipped with the usual addition
+ and the usual multiplication × forms an algebraic structure called the
field of real numbers. It is denoted by (R,+,×).

Definition 1.4. A binary operation ◦ on a set S is said to be commutative
if x ◦ y = y ◦ x for all x, y ∈ S.

Definition 1.5. A binary operation ◦ on a set S is said to be associative
if (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ S.

For a binary operation ◦ which is not associative, the expression x1 ◦ x2 ◦
· · · ◦ xn is ambiguous unless brackets are used. However, if ◦ is associative,
the expression x1 ◦ x2 ◦ · · · ◦ xn is uniquely defined; the factors may be
grouped in any manner so long as the order of the elements is unchanged.
Besides being associative, if ◦ is commutative also, then the order of the
factors may also be changed randomly without altering the value of the
product.

Definition 1.6. Let ◦ be an associative binary operation on a set S. Then
for any x ∈ S and any n ∈ N, the nth power of x, denoted by xn, is
defined by xn = x ◦ · · · ◦ x (n factors, each equals to x).

It is easy to prove that xm ◦ xn = xm+n for any m,n ∈ N.

In case an associative binary operation + is denoted additively, the nth
multiple (additive power) of x, denoted by nx, is defined by nx = x+· · ·+x
(n terms, each equals to x). Also, mx+ nx = (m+ n)x for any m,n ∈ N.

Definition 1.7. Let ∗ and ◦ be two binary operations on a set S. Then
∗ is said to be distributive over ◦ if x ∗ (y ◦ z) = (x ∗ y) ◦ (x ∗ z) and
(y ◦ z) ∗ x = (y ∗ x) ◦ (z ∗ x) for all x, y, z ∈ S.
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Definition 1.8. Let ◦ be a binary operation on a set S and let H ⊆ S.
Then H is said to be closed under ◦ if a ◦ b ∈ H for any a, b ∈ H.

For the algebraic structure (S, ◦), if H is a subset of S closed under ◦,
then ◦ is a binary operation on H also, i.e., (H, ◦) is also an algebraic
structure.

Example 1. Prove that the binary operation ∗ on the set N∪{0} defined
by a ∗ b = (a− b)2, ∀ a, b ∈ N ∪ {0}, is commutative but not associative.

Solution: For any a, b ∈ N ∪ {0}, we have

a ∗ b = (a− b)2 = (b− a)2 = b ∗ a.
Hence, the binary operation ∗ is commutative on N ∪ {0}.
Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ ((2− 3)2) = 1 ∗ 1 = (1− 1)2 = 0,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = ((1− 2)2) ∗ 3 = 1 ∗ 3 = (1− 3)2 = 4.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ N∪ {0}. Hence,
the operation ∗ is not associative.

Remark: In order to prove a statement, we need a logical argument.
However, to disprove a statement, a single counterexample is enough.

Composition Table

If S is a finite set, consisting of n elements say, then a binary operation
◦ in S can be described by means of a table consisting of n rows and n
columns in which the entry at the intersection of the row headed by an
element a ∈ S and the column headed by an element b ∈ S is a ◦ b. Such
a table is called a composition table.

Example 2. Consider the set S = {2, 3, 4, 5, 6} with the binary operation
∗ defined by

a ∗ b = the greatest prime factor of ab.

Form the composition table of (S, ∗).

Solution: Put ∗ and the elements of S in the topmost row and the
leftmost column (see the table below). Then we find out the values of
a ∗ b, where a, b ∈ S. When a = 2 and b = 2, we have

a ∗ b = 2 ∗ 2 = (the greatest prime factor of 2× 2) = 2.
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Put this value in the entry which is at the intersection of the row headed
by a = 2 and the column headed by b = 2. Similarly, we can find out the
values of the remaining entries. Now, we form the composition table for
(S, ∗) as follows.

∗ 2 3 4 5 6

2 2 3 2 5 3

3 3 3 3 5 3

4 2 3 2 5 3

5 5 5 5 5 5

6 3 3 3 5 3

Definition 1.9. An algebraic structure (S, ◦) is said to be with an identity
element e if there exists e ∈ S such that x ◦ e = e ◦ x = x for every x ∈ S.

Theorem 1.1. The identity element for an algebraic structure, if it exists,
is unique.

Proof: Let (S, ◦) be an algebraic structure. If e1 and e2 are two identity
elements of (S, ◦), then

e1 ◦ e2 = e2 (∵ e1 is an identity element),

e1 ◦ e2 = e1 (∵ e2 is an identity element).

But e1 ◦ e2 is uniquely determined because e1 ◦ e2 is the composition of e1
and e2. So, e1 = e2. Hence, the identity element of an algebraic structure,
if it exists, is unique.

Definition 1.10. Let (S, ◦) be an algebraic structure with identity element
e and let x be an element of S. An element y ∈ S, if it exists, is said to
be an inverse of x if x ◦ y = y ◦ x = e. The inverse of x is usually denoted
by x−1.

Theorem 1.2. If (S, ◦) is an algebraic structure with identity in which
the binary operation ◦ is associative, then the inverse of an element of S,
if it exists, is unique.

Proof: If y and z are two inverse elements of an element x ∈ S, then

x ◦ y = y ◦ x = e, (1)

x ◦ z = z ◦ x = e, where e is the identity element. (2)

Now, we have

y = y ◦ e (∵ e is the identity element)

= y ◦ (x ◦ z), by (2)
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= (y ◦ x) ◦ z (∵ ◦ is associative)

= e ◦ z, by (1)

= z (∵ e is the identity element).

Hence, the inverse of an element of S, if it exists, is unique.

Definition 1.11. In an algebraic structure with identity, an element is
said to be invertible if its inverse exists.

Theorem 1.3. Let (S, ◦) be an algebraic structure with identity in which
the binary operation ◦ is associative. If x and y are two invertible elements
of S, then x ◦ y is also invertible and (x ◦ y)−1 = y−1 ◦ x−1.

Proof: Let e be the identity element of (S, ◦). Since x−1 and y−1 are the
inverse elements of x and y respectively, we have

x ◦ x−1 = x−1 ◦ x = e, (1)

y ◦ y−1 = y−1 ◦ y = e. (2)

Now, we have

(x ◦ y) ◦ (y−1 ◦ x−1) =
[
(x ◦ y) ◦ y−1

]
◦ x−1 (∵ ◦ is associative)

=
[
x ◦ (y ◦ y−1)

]
◦ x−1 (∵ ◦ is associative)

= (x ◦ e) ◦ x−1, by (2)

= x ◦ x−1 (∵ e is the identity element)

= e, by (1).

Similarly, we have

(y−1 ◦ x−1) ◦ (x ◦ y) =
[
(y−1 ◦ x−1) ◦ x

]
◦ y (∵ ◦ is associative)

=
[
y−1 ◦ (x−1 ◦ x)

]
◦ y (∵ ◦ is associative)

= (y−1 ◦ e) ◦ y, by (1)

= y−1 ◦ y (∵ e is the identity element)

= e, by (2).

Thus, we see that

(x ◦ y) ◦ (y−1 ◦ x−1) = e = (y−1 ◦ x−1) ◦ (x ◦ y).

And, since x−1, y−1 ∈ S and S is closed under ◦, the element y−1◦x−1 ∈ S.
Hence, x ◦ y is invertible and (x ◦ y)−1 = y−1 ◦ x−1.
Example 3. Let n be a fixed positive integer and letZn = {0, 1, . . . , n− 1}.
For all a, b ∈ Zn, let a+n b denote the remainder when a+ b is divided
by n, and let a×n b denote the remainder when ab is divided by n. Then
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+n and ×n are both binary operations in Zn. The set Zn is usually called
the set of integers modulo n. The operation +n is usually called addi-
tion modulo n, and the operation ×n is usually called multiplication
modulo n.

(a) Show that both +n and ×n are commutative as well as associative.

(b) Let ◦ be a binary operation on Z7 defined by a ◦ b = (a+7 b)×7 b, for
all a, b ∈ Z7. Check, by means of a composition table, whether the set
H = {0, 1, 2, 3} ⊂ Z7 is closed under ◦ or not.

(c) Show that the binary operation ◦ defined above (in (b)) is neither
commutative nor associative.

(d) Examine the algebraic structures (Z7,+7) and (Z7,×7) for the exis-
tence of identity and invertible elements.

Solution:

(a) For any a, b ∈ Zn, we have

a+n b = the remainder when a+ b is divided by n

= the remainder when b+ a is divided by n

= b+n a.

Hence, +n is commutative. The remaining parts are left as an exercise for
the reader.

(b) We form the composition table for (H, ◦) as follows.

◦ 0 1 2 3

0 0 1 4 2

1 0 2 6 5

2 0 3 1 1

3 0 4 3 4

From the table we see that 1 ◦ 2 = 6 /∈ H, etc. Hence, H is not closed
under ◦.

(c) Left as an exercise for the reader.

(d) Let us consider the algebraic structure (Z7,+7). If e is the identity
element of (Z7,+7), then for any element a ∈ Z7, we have

a+7 e = e+7 a = a.

This means that a is the remainder when a+ e (or e+ a) is divided by 7.
This is possible only when e = 0 ∈ Z7 for any a ∈ Z7. Hence, e = 0 is the
identity element of (Z7,+7).
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Now, if y ∈ Z7 is the inverse of x ∈ Z7, then we have

x+7 y = y +7 x = 0.

This means that x + y (or y + x) is divisible by 7. So, we must have
x+ y = 0 or x+ y = 7. Thus, for x = 0, we see that y = 0, and for x 6= 0,
we see that y = 7 − x. Hence, the inverse of 0 is 0 and the inverse of a
non-zero x ∈ Z7 is 7− x.

For the algebraic structure (Z7,×7), the identity element is 1, the element
0 is not invertible and 1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3,
6−1 = 6. The details are left as an exercise for the reader.

Exercise 4. Consider the binary operation ◦ on N defined by a ◦ b =
minimum of a and b. Prove that ◦ is commutative. Examine the algebraic
structure (N, ◦) for the existence of identity and invertible elements.

Exercise 5. Prove that the binary operation ◦ on the set R defined by

a ◦ b =





1 if a > b,
0 if a = b,
−1 if a < b

is neither commutative nor associative.

Example 6. How many different binary operations can be defined on a
set S consisting of 2 elements?

Answer: 24.

Explanation: There are 2 × 2 = 4 elements in S × S. Each of these 4
elements can map to any of the 2 elements of S. So, there are 2×2×2×2 =
24 possible mappings from S × S to S. Another approach via composition
table: If a composition table of S is constructed, there are 2×2 = 4 entries
to be filled. Each of these 4 entries can be any of the 2 elements of S (so
that the composition is a binary operation). So, there are 2×2×2×2 = 24

possible ways of constructing the composition table.

Exercise 7. Show that the binary operation ∗ on R × R defined by
(a, b)∗(c, d) = (ac−bd, ad+bc) is commutative as well as associative. Also,
examine the algebraic structure (R × R, ∗) for the existence of identity
and invertible elements.

Hint. The identity element is (1, 0) and the inverse of (a, b) is
(

a

a2 + b2
,
−b

a2 + b2

)
,

where (a, b) 6= (0, 0).



8 | Binary Operations Exercise 1.1

Exercise 1.1

1. If E is the set of all even natural numbers and F , the set of all odd
natural numbers, answer the following:

(a) Is addition a binary operation on F?

(b) Is multiplication a binary operation on F? If yes, find whether
identity element exists or not.

(c) Is addition a binary operation on E? If yes, find whether identity
element exists or not.

(d) Is multiplication a binary operation on E? If yes, find whether
identity element exists or not.

Solution:

(a) No. Addition is not a binary operation on F . We see that 1, 3 ∈ F ,
but 1 + 3 = 4 /∈ F .

(b) Yes. Multiplication is a binary operation on F . We know that
every number in F is of the form 2k − 1 for some k ∈ N. Now,
(2a− 1)(2b− 1) = 2(2ab− a− b+ 1)− 1 ∈ F for any a, b ∈ N (because
2ab− a− b+ 1 = ab+ (a− 1)(b− 1) ∈ N). Thus, the multiplication of
two odd numbers is an odd number. Again, 1 ∈ F , and for any x ∈ F ,
1 · x = x · 1 = x. Hence, the identity element exists and is 1.

(c) Yes. Addition is a binary operation on E. We see that 2a+ 2b =
2(a+ b) for all a, b ∈ N. Thus, the addition of two even numbers is an
even number. Again, if e is the identity element, then for any x ∈ E,
we must have e+ x = x+ e = x. There is no such e in E (since 0 /∈ E
and e + x = x + e > x for all e, x ∈ E). Hence, the identity element
does not exist.

(d) Yes. Multiplication is a binary operation on E. We see that
2a× 2b = 2(2ab) for all a, b ∈ N. Thus, the multiplication of two even
numbers is an even number. Again, if e is the identity element, then
for any x ∈ E, we must have e × x = x × e = x. There is no such e
in E (since 1 /∈ E and e× x = x× e > x for all e, x ∈ E). Hence, the
identity element does not exist.

2. State whether each of the following definitions of ∗ gives a binary
operation on N or not. Give justification of your answer.

a ∗ b = a− b,(i) a ∗ b = |a− b|,(ii) a ∗ b = a2b,(iii)

a ∗ b = b,(iv) a ∗ b = a+ ab,(v) a ∗ b = ab,(vi)

a ∗ b = ab− 1,(vii) a ∗ b = ab+ 1.(viii)
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Solution: (i) No. We see that 1, 3 ∈ N, but 1 ∗ 3 = 1− 3 = −2 /∈ N.

(ii) No. We see that 1, 1 ∈ N, but 1 ∗ 1 = 1− 1 = 0 /∈ N.

(iii) Yes. Since multiplication is a binary operation on N, for any
a, b ∈ N, a ∗ b = a2b = a× a× b ∈ N.

(iv) Yes. For any a, b ∈ N, a ∗ b = b ∈ N.

(v) Yes. Since multiplication is a binary operation on N, for any
a, b ∈ N, ab ∈ N. Again, since addition is a binary operation on N,
a ∗ b = a+ ab ∈ N.

(vi) Yes. Since multiplication is a binary operation on N, for any
a, b ∈ N, a ∗ b = ab = a× a× · · · × a︸ ︷︷ ︸

b times

∈ N.

(vii) No. We see that 1, 1 ∈ N, but 1 ∗ 1 = 1× 1− 1 = 0 /∈ N.

(viii) Yes. Since multiplication and addition are binary operations on
N, for any a, b ∈ N, a ∗ b = ab+ 1 ∈ N.

3. Prove that the following binary operations on N are commutative but
not associative.

a ∗ b = 2a+ 2b,(i) a ∗ b = 2ab,(ii)

a ∗ b = (a− b)2,(iii) a ∗ b = ab+ 1.(iv)

Solution: (i) Since addition is commutative on N, for any a, b ∈ N,
a ∗ b = 2a + 2b = 2b + 2a = b ∗ a. Hence, the binary operation ∗ is
commutative on N.

Taking a = 1, b = 1, c = 2, we have

a ∗ (b ∗ c) = 1 ∗ (1 ∗ 2) = 1 ∗ (2 · 1 + 2 · 2) = 1 ∗ 6 = 2 · 1 + 2 · 6 = 14,

(a ∗ b) ∗ c = (1 ∗ 1) ∗ 2 = (2 · 1 + 2 · 1) ∗ 2 = 4 ∗ 2 = 2 · 4 + 2 · 2 = 12.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ N. Hence,
the operation ∗ is not associative.

(ii) Since multiplication is commutative on N, for any a, b ∈ N, ab = ba
and so a ∗ b = 2ab = 2ba = b ∗ a. Hence, the binary operation ∗ is
commutative on N.

Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ (22×3) = 1 ∗ 64 = 21×64 = 264,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = (21×2) ∗ 3 = 4 ∗ 3 = 24×3 = 212.
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Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ N. Hence,
the operation ∗ is not associative.

(iii) When a, b ∈ N and a = b, we see that a ∗ b = (a − b)2 = 0 /∈ N.
Hence, ∗ is not a binary operation on N. (cf. Example 1, page 3.)

(iv) Since multiplication is commutative on N, for any a, b ∈ N, ab = ba
and so a ∗ b = ab+ 1 = ba+ 1 = b ∗ a. Hence, the binary operation ∗ is
commutative on N.

Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ (2× 3 + 1) = 1 ∗ 7 = 1× 7 + 1 = 8,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = (1× 2 + 1) ∗ 3 = 3 ∗ 3 = 3× 3 + 1 = 10.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ N. Hence,
the operation ∗ is not associative.

4. Show that the binary operation ∗ on N defined by a∗b = b is associative
but not commutative.

Solution: For any a, b, c ∈ N, we have

a ∗ (b ∗ c) = a ∗ c = c and (a ∗ b) ∗ c = b ∗ c = c.

Thus, a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ N. Hence, the given binary
operation ∗ is associative.

Taking a = 1 and b = 2, we have

a ∗ b = 1 ∗ 2 = 2 and b ∗ a = 2 ∗ 1 = 1.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ N. Hence, the binary
operation ∗ is not commutative.

5. Show that the following binary operations ∗ on Q are neither associative
nor commutative.

x ∗ y = x− y + 1,(i) x ∗ y = 2x+ 3y,(ii)

x ∗ y = x+ xy,(iii) x ∗ y = xy2.(iv)

Solution: (i) Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ (2− 3 + 1) = 1 ∗ 0 = 1− 0 + 1 = 2,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = (1− 2 + 1) ∗ 3 = 0 ∗ 3 = 0− 3 + 1 = −2.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ Q. Hence,
the operation ∗ is not associative.
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Again, for a = 1 and b = 2, we have

a ∗ b = 1 ∗ 2 = 1− 2 + 1 = 0 and b ∗ a = 2 ∗ 1 = 2− 1 + 1 = 2.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ Q. Hence, the given
binary operation ∗ is not commutative.

(ii) Taking a = 1, b = 0, c = 0, we have

a ∗ (b ∗ c) = 1 ∗ (0 ∗ 0) = 1 ∗ (2 · 0 + 3 · 0) = 1 ∗ 0 = 2 · 1 + 3 · 0 = 2,

(a ∗ b) ∗ c = (1 ∗ 0) ∗ 0 = (2 · 1 + 3 · 0) ∗ 0 = 2 ∗ 0 = 2 · 2 + 3 · 0 = 4.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ Q. Hence,
the operation ∗ is not associative.

Again, for a = 1 and b = 2, we have

a ∗ b = 1 ∗ 2 = 2× 1 + 3× 2 = 8 and b ∗ a = 2 ∗ 1 = 2× 2 + 3× 1 = 7.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ Q. Hence, the given
binary operation ∗ is not commutative.

(iii) Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ (2 + 2× 3) = 1 ∗ 8 = 1 + 1× 8 = 9,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = (1 + 1× 2) ∗ 3 = 3 ∗ 3 = 3 + 3× 3 = 12.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ Q. Hence,
the operation ∗ is not associative.

Again, for a = 1 and b = 2, we have

a ∗ b = 1 ∗ 2 = 1 + 1× 2 = 3 and b ∗ a = 2 ∗ 1 = 2 + 2× 1 = 4.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ Q. Hence, the given
binary operation ∗ is not commutative.

(iv) Taking a = 1, b = 2, c = 3, we have

a ∗ (b ∗ c) = 1 ∗ (2 ∗ 3) = 1 ∗ (2× 32) = 1 ∗ 18 = 1× 182 = 182,

(a ∗ b) ∗ c = (1 ∗ 2) ∗ 3 = (1× 22) ∗ 3 = 4 ∗ 3 = 4× 32 = 62.

Thus, we see that a ∗ (b ∗ c) 6= (a ∗ b) ∗ c, for some a, b, c ∈ Q. Hence,
the operation ∗ is not associative.

Again, for a = 1 and b = 2, we have

a ∗ b = 1 ∗ 2 = 1× 22 = 4 and b ∗ a = 2 ∗ 1 = 2× 12 = 2.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ Q. Hence, the given
binary operation ∗ is not commutative.
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6. Prove that the binary operation ◦ on Z defined by a ◦ b = a+ b− 5 is
associative as well as commutative.

Solution: For any x, y, z ∈ Z,

x ◦ (y ◦ z) = x ◦ (y + z − 5) = x+ (y + z − 5)− 5 = x+ y + z − 10,

(x ◦ y) ◦ z = (x+ y − 5) ◦ z = (x+ y − 5) + z − 5 = x+ y + z − 10.

Thus, we see that x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ Z. Hence, the
binary operation ◦ is associative.

Again, for any x, y ∈ Z, we have

x ◦ y = x+ y − 5 = y + x− 5 = y ◦ x.
Hence, the binary operation ◦ is commutative.

7. Prove that the binary operation ∗ on Z defined by a ∗ b = 3a + 5b
is neither associative nor commutative. Also, prove that the usual
multiplication on Z distributes over ∗.
Solution: Here, the given binary operation on Z is a ∗ b = 3a + 5b.
Taking x = 1, y = 0 and z = 0, we have

x ∗ (y ∗ z) = 1 ∗ (0 ∗ 0) = 1 ∗ (3 · 0 + 5 · 0) = 1 ∗ 0 = 3 · 1 + 5 · 0 = 3,

(x ∗ y) ∗ z = (1 ∗ 0) ∗ 0 = (3 · 1 + 5 · 0) ∗ 0 = 3 ∗ 0 = 3 · 3 + 5 · 0 = 9.

Thus, we see that x ∗ (y ∗ z) 6= (x ∗ y) ∗ z for some x, y, z ∈ Z. Hence, ∗
is not associative on Z.

Again, for x = 0 and y = 3, we have

x ∗ y = 0 ∗ 3 = 3× 0 + 5× 3 = 15 and y ∗ x = 3 ∗ 0 = 3× 3 + 5× 0 = 9.

Thus, we see that x ∗ y 6= y ∗ x for some x, y ∈ Z. Hence, ∗ is not
commutative.

Now, for any x, y, z ∈ Z, we have

x(y ∗ z) = x(3y + 5z) = 3xy + 5xz,

(xy) ∗ (xz) = 3xy + 5xz.

Similarly, for any x, y, z ∈ Z, we have

(x ∗ y)z = (3x+ 5y)z = 3xz + 5yz,

(xz) ∗ (yz) = 3xz + 5yz.

Thus, x(y ∗ z) = (xy) ∗ (xz) and (x ∗ y)z = (xz) ∗ (yz) for all x, y, z ∈
Z. Hence, the usual multiplication on Z distributes over the binary
operation ∗ on Z.
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8. Let the binary operations ◦ and ∗ on R be defined by

x ◦ y = 2x+ 2y and x ∗ y = x.

Show that ◦ is commutative but not associative and ∗ is associative
but not commutative. Also, show that ◦ distributes over ∗.
Solution: For any a, b ∈ R, we have

a ◦ b = 2a+ 2b = 2b+ 2a = b ◦ a.
Hence, ◦ is commutative on R. Now, for a = 0, b = 1 and c = 2, we
have

a ◦ (b ◦ c) = 0 ◦ (1 ◦ 2) = 0 ◦ (2 · 1 + 2 · 2) = 0 ◦ 6 = 2 · 0 + 2 · 6 = 12,

(a ◦ b) ◦ c = (0 ◦ 1) ◦ 2 = (2 · 0 + 2 · 1) ◦ 2 = 2 ◦ 2 = 2 · 2 + 2 · 2 = 8.

Thus, a ◦ (b ◦ c) 6= (a ◦ b) ◦ c for some a, b, c ∈ R. Therefore, ◦ is not
associative.

For any a, b, c ∈ R, we have

a ∗ (b ∗ c) = a ∗ b = a,

(a ∗ b) ∗ c = a ∗ c = a.

∴ a ∗ (b ∗ c) = (a ∗ b) ∗ c ∀ a, b, c ∈ R.
Hence, ∗ is associative. Now, for a = 0 and b = 1, we have

a ∗ b = 0 ∗ 1 = 0 and b ∗ a = 1 ∗ 0 = 1.

Thus, we see that a ∗ b 6= b ∗ a for some a, b ∈ R. Therefore, ∗ is not
commutative.

Now, for any a, b, c ∈ R, we have

a ◦ (b ∗ c) = a ◦ b = 2a+ 2b = (2a+ 2b) ∗ (2a+ 2c) = (a ◦ b) ∗ (a ◦ c).
Similarly, for any a, b, c ∈ R, we have

(a ∗ b) ◦ c = a ◦ c = 2a+ 2c = (2a+ 2c) ∗ (2b+ 2c) = (a ◦ c) ∗ (b ◦ c).
Hence, ◦ distributes over ∗.

9. Prove that the binary operation ◦ on N defined by a ◦ b = maximum
of a and b is associative and commutative. Find the identity element
and the invertible elements of (N, ◦).
Solution: For any a, b, c ∈ N, we have

a ◦ (b ◦ c) = a ◦ d, where d is the maximum of b and c

= maximum of a and d
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= maximum of a, b and c.

Similarly, (a◦b)◦c = maximum of a, b and c. Thus, a◦(b◦c) = (a◦b)◦c
for all a, b, c ∈ N. Hence, ◦ is associative.

For any a, b ∈ N, we have

a ◦ b = maximum of a and b = maximum of b and a = b ◦ a.
Hence, ◦ is commutative.

If e is the identity element, then for any a ∈ N, we have

e ◦ a = a ◦ e = a

=⇒ maximum of e and a = a

=⇒ e ≤ a ∀ a ∈ N.
This inequality holds only when e = 1 ∈ N. Hence, 1 is the identity
element of (N, ◦). Again, for any a ∈ N, let b be the inverse of a. Then

a ◦ b = 1 =⇒ maximum of a and b = 1.

This is possible only when a = b = 1. Hence, 1 is the only invertible
element of (N, ◦).

10. Investigate the set of integers, the set of rational numbers and the set of
irrational numbers for the closure under the following binary operations:
(i) addition, (ii) subtraction, (iii) multiplication, (iv) division.

Solution: Consider the set Z of integers. We know that addition,
subtraction or multiplication of two integers is again an integer. So, the
set of integers is closed under addition, subtraction and multiplication.
Since 1, 2 ∈ Z and 1/2 /∈ Z, the set of integers is not closed under
division.

Again, consider the set Q of rational numbers. We know that for any
two rational numbers x = a/b and y = c/d, where a, b, c, d ∈ Z, b 6= 0,
d 6= 0, we have

a

b
± c

d
=
ad± bc
bd

, bd 6= 0; x× y =
a

b
× c

d
=
ac

bd
, bd 6= 0.

Since Z is closed under multiplication, addition and subtraction, we
see that ad± bc, ac, bd ∈ Z, bd 6= 0. So, x± y, xy ∈ Q for all x, y ∈ Q.
Hence, the set of rational numbers is closed under addition, subtraction
and multiplication.
Since 1, 0 ∈ Q and 1/0 /∈ Q, the set of rational numbers is not closed
under division.

Lastly, consider the set Qc of irrational numbers. Let a = 1 +
√

2
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and b = 1 −
√

2. Now, a + b = (1 +
√

2) + (1 −
√

2) = 2, a − a = 0,
ab = (1 +

√
2)(1−

√
2) = −1 and a/a = 1. Now, we see that a, b ∈ Qc,

whereas a+ b, a− a, ab, a/a /∈ Qc. Hence, the set of irrational numbers
is not closed under addition, subtraction, multiplication and division.

11. Prove that there is no non-empty finite subset of N closed under
addition.

Solution: Let A be any non-empty subset of N closed under addition.
Since A is non-empty, there exists a natural number a ∈ A. Again, A
is closed under addition. So, we have

a+ a = 2a ∈ A,
2a+ a = 3a ∈ A,

...

Also, a < 2a < 3a < · · · . Thus, the natural numbers a, 2a, 3a, . . . are
distinct elements in A. So, A is infinite. Now, we have shown that any
non-empty subset of N closed under addition is infinite. Hence, there
is no non-empty finite subset of N closed under addition.

Or

Let A be any non-empty finite subset of N. Since we can arrange any
given natural numbers in ascending order, we may take

A = {a1 < a2 < · · · < ak}.
But a1 + ak /∈ A (because a1 + ak > ak). Thus, A is not closed under
addition. So, any non-empty finite subset of N is not closed under
addition. Hence, there is no non-empty finite subset of N closed under
addition.

12. Prove that the only non-empty finite subset of N closed under multipli-
cation is {1}.
Solution: Consider the subset {1} of N. Since 1 × 1 = 1 ∈ {1}, the
subset {1} is closed under multiplication. Let, if possible, A (6= {1})
be any non-empty finite subset of N closed under multiplication. Since
A is non-empty and A 6= {1}, there exists a natural number a ∈ A
different from 1 (i.e., a 6= 1). Again, A is closed under multiplication.
So, we have

a× a = a2 ∈ A,
a2 × a = a3 ∈ A,
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...

Since a 6= 1 and a ∈ N, a < a2 < a3 < · · · . Thus, the natural numbers
a, a2, a3, . . . are distinct elements in A. So, A is infinite, which is a
contradiction. Therefore, such A does not exist. Hence, the only
non-empty finite subset of N closed under multiplication is {1}.

13. Find whether the identity element exists or not for each of the following
algebraic structures.

(N,+),(i) (N, ·),(ii) (Z,+),(iii) (Z, ·),(iv)

(Q,+),(v) (Q, ·),(vi) (P (S),∩),(vii) (P (S),∪).(viii)

Solution: (i) If e is the identity element of (N,+), then we must have

a+ e = e+ a = a for all a ∈ N.
In particular, we must have 1 + e = 1. This is no such e ∈ N. (Note
that 0 /∈ N). Hence, the identity element does not exist for (N,+).

(ii) If e is the identity element of (N, ·), then we must have

a · e = e · a = a for all a ∈ N.
This is true when e = 1 ∈ N. Hence, the identity element exists for
(N, ·) and is 1.

(iii) If e is the identity element of (Z,+), then we must have

a+ e = e+ a = a for all a ∈ Z.
This is true when e = 0 ∈ Z. Hence, the identity element exists for
(Z,+) and is 0.

(iv) If e is the identity element of (Z, ·), then we must have

a · e = e · a = a for all a ∈ Z.
This is true when e = 1 ∈ Z. Hence, the identity element exists for
(Z, ·) and is 1.

(v) If e is the identity element of (Q,+), then we must have

a+ e = e+ a = a for all a ∈ Q.
This is true when e = 0 ∈ Q. Hence, the identity element exists for
(Q,+) and is 0.

(vi) If e is the identity element of (Q, ·), then we must have

a · e = e · a = a for all a ∈ Z.
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This is true when e = 1 ∈ Q. Hence, the identity element exists for
(Q, ·) and is 1.

(vii) If E is the identity element of (P (S),∩), then we must have

A ∩ E = E ∩A = A for all A ∈ P (S)

=⇒ A ⊆ E for all A ∈ P (S).

This implies that E = S ∈ P (S). Hence, the identity element exists for
(P (S),∩) and is S.

(viii) If E is the identity element of (P (S),∪), then we must have

A ∪ E = E ∪A = A for all A ∈ P (S)

=⇒ E ⊆ A for all A ∈ P (S).

This implies that E = φ ∈ P (S). Hence, the identity element exists for
(P (S),∪) and is φ.

14. Let S = {1, 2, 3, 4, 5, 6, 7}. Find the identity element of the algebraic
structure (P (S),∩). Also, find the inverse of A = {2, 3, 4}, if it exists.

Solution: If E is the identity element of (P (S),∩), then we must have

A ∩ E = E ∩A = A for all A ∈ P (S)

=⇒ A ⊆ E for all A ∈ P (S).

This implies that E = S ∈ P (S). Hence, the identity element of the
algebraic structure (P (S),∩) is S.

For any element B ∈ P (S), we have

A ∩B = B ∩A ⊆ A ( S.

Thus, A ∩ B = B ∩ A 6= S for all B ∈ P (S). Hence, the inverse of A
does not exist.

15. Consider the binary operation ∗ on Q defined by

x ∗ y = x+ y − xy.
Find the identity element of (Q, ∗). Also, find x−1 for x ∈ Q. For what
value of x does the inverse not exist?

Solution: Let e be the identity element of (Q, ∗). Then, for any a ∈ Q,
we must have

a ∗ e = e ∗ a = a

=⇒ a+ e− ae = a

=⇒ e(1− a) = 0
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=⇒ e = 0, provided a 6= 1.

So, a ∗ 0 = 0 ∗ a = a for all a ∈ Q, a 6= 1. For a = 1, we have

a ∗ 0 = 1 ∗ 0 = 1 + 0− 1× 0 = 1

0 ∗ a = 0 ∗ 1 = 0 + 1− 0× 1 = 1.

Thus, we see that a∗0 = 0∗a = a for all a ∈ Q. Hence, 0 is the identity
element of (Q, ∗).
Let y be the inverse of x ∈ Q. Then we must have

x ∗ y = y ∗ x = 0

=⇒ x+ y − xy = 0

=⇒ x = y(x− 1)

=⇒ y =
x

x− 1
, which is defined in Q for all x 6= 1.

Hence, the inverse of any element x ∈ Q, other than 1, is x
x−1 . The

inverse of the element 1 does not exist.

16. Form the composition table for the set S = {1, 2, 3, 4, 5, 6} with respect
to the binary operation of multiplication modulo 7. Deduce that S is
closed under the operation. From the table, find the identity element
and the inverse of each element of S. Also, calculate 26 in S.

Solution: We form the composition table for (S,×7) as follows.

×7 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

From the table, we see that x×7 y ∈ S for all x, y ∈ S. So, S is closed
under the binary operation ×7. We also see from the table that 1 is the
identity element of S and 1−1 = 1, 2−1 = 4, 3−1 = 5, 4−1 = 2, 5−1 = 3,
6−1 = 6. Now, 26 = (22)3 = (2×7 2)3 = 43 = (4×7 4)×7 4 = 2×7 4 = 1.

17. Form the composition table for the set S = {0, 1, 2, 3, 4, 5} with respect
to the binary operation of addition modulo 6. From the table, find the
identity element and the inverse of each element of S.
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Solution: We form the composition table for (S,+6) as follows.

+6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

From the table, we see that 0 +6 a = a and a +6 0 = a for all a ∈ S.
Hence, 0 is the identity element of S.

The inverse of an element a ∈ S is the element b of S, where a+6 b = 0
and b+6 a = 0. From the table, we see that 0−1 = 0, 1−1 = 5, 2−1 = 4,
3−1 = 3, 4−1 = 2, 5−1 = 1.

Remark: In order to find the inverse of an element a ∈ S, look at
the row headed by a, and find out the the entry and the respective
column where the identity element 0 is. Then the element that headed
this particular column is the inverse of a.

18. Let a binary operation ∗ on N be defined by

a ∗ b = HCF of a and b.

Show by means of a composition table that the set H = {1, 2, 3, 4, 5, 6}
is closed under ∗.
Solution: We form the composition table for (H, ∗) as follows.

∗ 1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 2 1 2 1 2

3 1 1 3 1 1 3

4 1 2 1 4 1 2

5 1 1 1 1 5 1

6 1 2 3 2 1 6

From the table, we see that x ∗ y ∈ H for all x, y ∈ H. Hence, H is
closed under the binary operation ∗.

19. A binary operation ◦ on N is defined by

a ◦ b = LCM of a and b.

Form the composition table for the set H = {1, 2, 3, 4, 5} with respect
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to ◦. State whether H is closed under ◦ or not.

Solution: We form the composition table for (H, ◦) as follows.

◦ 1 2 3 4 5

1 1 2 3 4 5

2 2 2 6 4 10

3 3 6 3 12 15

4 4 4 12 4 20

5 5 10 15 20 5

From the table, we see that 2 ◦ 3 = 6 /∈ H. Hence, H is not closed
under the binary operation ◦.

20. Prove that the set S = {3n : n ∈ Z} is closed under the usual addition
and multiplication. Examine the algebraic structures (S,+) and (S, ·)
for existence of identity and invertible elements.

Solution: Let x and y be any two elements of S. Then x = 3m and
y = 3n for some m,n ∈ Z. Now, we have

x+ y = 3m+ 3n = 3(m+ n) ∈ S and x · y = 3m · 3n = 3(3mn) ∈ S.
Thus, x + y, x · y ∈ S for all x, y ∈ S. Hence, S is closed under the
usual addition and multiplication.

Consider the algebraic structure (S,+). Let e be the identity element
of S. Then for any element a = 3m of S, we have

a+ e = e+ a = a =⇒ 3m+ e = 3m =⇒ e = 0 = 3× 0 ∈ S.
Hence, 0 is the identity element of (S,+). Again, if y is the inverse of
an element x = 3m of S, then

x+ y = y + x = 0 =⇒ 3m+ y = 0 =⇒ y = −3m = 3(−m) ∈ S.
Hence, the inverse of any element 3m is −3m.

Consider the algebraic structure (S, ·). Let e be the identity element of
S. Then for any element a = 3m of S, we have

a · e = e · a = a =⇒ 3me = 3m.

In particular, when m = 1, we get 3e = 3. This is not possible for
any element e ∈ S. Hence, the identity element does not exist for the
algebraic structure (S, ·) and as a result, the inverse does not exist for
any element.
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Chapter 8

Statics

“This most beautiful system of the sun, planets, and comets, could
only proceed from the counsel and dominion of an intelligent and
powerful Being.”

— Isaac Newton, The Principia: Mathematical Principles of
Natural Philosophy

Mechanics is the branch of science which deals with the action of forces
on bodies. In this chapter, we shall study the basics of statics. Statics
is the branch of mechanics which deals with bodies at rest and forces in
equilibrium.

Some Terms and Definitions

Definition 8.1 (Matter). A matter is anything that occupies space and
can be perceived by our senses.

Definition 8.2 (Body). A body is a portion of a matter limited in all
directions, having a definite shape and size, and occupying some definite
space.

Definition 8.3 (Force). A force is that which changes or tends to change
the state of rest or of uniform motion of a body.

Definition 8.4 (Rigid body). A rigid body is one whose size and shape
do not alter when acted on by any forces whatsoever, so that the distance
between any pair of particles in it remains invariable.

Definition 8.5 (Particle). A particle is a body of infinitely small di-
mensions. When we speak of a body as a particle, we mean that we are
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not concerned with its actual dimensions and that its position can be
represented by a mathematical point.

Definition 8.6 (Equilibrium). If a system of forces acting on a body
keeps it at rest, then the forces are said to be in equilibrium.

Representation of a Force

A force is generally characterized by its point of application, its magnitude,
and its direction. It is a vector quantity. It can be represented by a line
segment ending with an arrowhead. The length of the line segment is
proportional to the magnitude of the force. The magnitude refers to the
size or amount of the force in acceptable units. The SI unit of force is
newton (N).

8
N

Line of action

45◦

A Fixed axis

Figure 1

8
N

Line of action

45◦

A Fixed axis

Figure 2

The line of action of a force is the path of the line along which the force
acts. The sense of a force refers to the way in which the force acts along
its line of action. The sense is represented by an arrowhead. A force may
be acting vertically, but the sense could be up or down. Figure 1 and
Figure 2 show two forces having the same magnitude (8 N), the same
point of application (point A), and the same line of action (45◦ from
the horizontal) but a different sense. The line of action and the sense
determine the direction of the force. The word ‘direction’ is sometimes
used to refer to the line of action of the force.

#„

F
A B

A force represented by a line segment AB with
sense from A to B is denoted in vector notation
by

#    „

AB. If the sense is from B to A, then the force
is denoted by

#    „

BA. The magnitude of a force
#„

F is denoted by F . It should
be noted that the magnitude of a force is always non-negative. In solving
problems, the sense of an unknown force, say

#„

P , along its line of action
may be chosen arbitrarily. In such cases, the value of P thus calculated
represents the magnitude with the sense; a negative sign indicates that
the sense of

#„

P is opposite the sense we have chosen.
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Index

cosec, 227

cos, 227

cot, 227

sec, 227

sin, 227

tan, 227

addition modulo, 6

algebraic structure, 2

allied angles, 228

AM, see arithmetic mean

AM-GM-HM inequality, 81

AP, see arithmetic progression

arithmetic mean, 29

arithmetic progression, 29

nth term, 29

common difference, 29

sum of the first n terms, 30

associated angles, 228

associative, 2

binary operation, 1

external, 2

binomial coefficients, 127

binomial expansion

general term, 129

middle term, 129

of (a+ x)n, 127

binomial theorem, 126

body, 250

rigid body, 250

closed, 3
commutative, 2
complete polynomial, 190
composition table, 3
coterminus angles, 236

deduction, 107
distributive, 2

equilibrium, 251

force, 250, 251
components, 252
conditions for equilibrium, 257
direction, 251
equilibrium, 251
equilibrium of concurrent forces,

256
line of action, 251
magnitude, 251
parallelogram of forces, 252
principle of transmissibility, 252
representation, 251
resolution of a force into two

components, 254
resolved parts, 255
resultant, 252
resultant of coplanar forces, 257
resultant of two forces, 253
sense, 251
triangle of forces, 256

converse, 256
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general term
in the expansion of (a+x)n, 129
of a GP, 54
of a sequence, 21
of an AP, 29

geometric mean, 54
geometric progression, 54

nth term, 54
common ratio, 54
sum of the first n terms, 55

GM, see geometric mean
GP, see geometric progression

harmonic mean, 80
harmonic progression, 80
HM, see harmonic mean
HP, see harmonic progression

identity, 4, 214
induction, 107, 108
inverse, 4

matrix, 140
addition of matrices, 151
column matrix, 142
conformable

for addition, 151
for multiplication, 151

diagonal elements, 142
diagonal matrix, 142
equality of matrices, 143
identity matrix, 142
leading diagonal, 142
lower triangular matrix, 143
multiplication by a scalar, 151
multiplication of matrices, 151
null matrix, 142
operations on matrices, 151
principal diagonal, 142
rectangular matrix, 141
row matrix, 141
scalar matrix, 142

skew-symmetric matrices, 175
square matrix, 141
subtraction of matrices, 151
symmetric matrices, 175
transpose of a matrix, 174
unit matrix, 142
upper triangular matrix, 143
zero matrix, 142

matter, 250
multiplication modulo, 6

particle, 250
Pascal’s triangle, 128
principle of mathematical induction,

108, 109
proposition, 107

reaction, 252
reciprocal expression, 190
recurring expression, 190

sequence, 21
sine formula, 254
statement, 107

tension, 252
trigonometric equation, 235

general solution, 236
principal solution, 236
root, 236
solution, 236

trigonometric ratios, 226
of −θ, 228
of 90◦ − θ, 229
of 90◦ + θ, 230
of 180◦ − θ, 230
of 180◦ + θ, 231
of 270◦ − θ, 232
of 270◦ + θ, 233
of 360◦ ± θ, 234
signs, 227

weight, 252


